
Leveraging Processor-diversity for Improved Performance in
Heterogeneous-ISA Systems

Yihan Pang

Thesis submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Engineering

Binoy Ravindran, Chair

Changwoo Min

Cameron D. Patterson

Sept 27, 2019

Blacksburg, Virginia

Keywords: System Software, Heterogeneous Architectures, SIMD, Scheduling, ISA

Copyright 2019, Yihan Pang

Leveraging Processor-diversity for Improved Performance in
Heterogeneous-ISA Systems

Yihan Pang

(ABSTRACT)

The purpose of this thesis is to investigate the effectiveness of executing High Performance

Computing (HPC) workloads on multiprocessors with heterogeneous Instruction Set Archi-

tecture (ISA) cores. ISA-heterogeneity in processor designs provides a unique dimension for

researchers to explore performance benefits through diversity in design choices. Additionally,

each application has a natural preference to one processor in a selected group of processors

(we defined this term as processor-preference), and processor-preference is highly affected

by processor design choices. Thus, a system with heterogeneous-ISA cores offers an intrigu-

ing design perspective, packing heterogeneous-ISA cores in the same processor or system

that compensate each other in dynamic workload scenarios. This thesis considers dynamic

migrating applications with different processor-preferences across ISA-different cores to ex-

ploit the potential of this idea. With SIMD instructions getting more attention from chip

designers, this thesis also presents the necessary modifications for a general compiler/run-

time infrastructure to transform the dynamic program state of SIMD regions at run-time

from one ISA format to another for cross-ISA migration and execution. Lastly, this the-

sis presents a processor-preference-aware scheduling policy that makes dynamic cross-ISA

migration decisions that improve overall system throughput compared to homogeneous-ISA

systems. This thesis prototypes a heterogeneous-ISA system using an Intel Xeon Gold 5118

x86-64 server and a Cavium ThunderX ARMv8 server and evaluates the effectiveness of

our infrastructure and scheduling policy. Our results reveal that heterogeneous-ISA systems

that are processor-preference-aware and with cross-ISA execution migration capability can

yield throughput gains up to 36% compared to traditional homogeneous ISA systems.

Leveraging Processor-diversity for Improved Performance in
Heterogeneous-ISA Systems

Yihan Pang

(GENERAL AUDIENCE ABSTRACT)

The author of this thesis has a family full of non-engineers. To persuade family members

that the work of this thesis is meaningful, aka the author is not procrastinating in school,

the author decided to draw an analogy between processors and cars.

Suppose in an alternative universe, cars (systems) can be powered by engines (processors)

that uses two different fuel-sources (ISAs): gasoline or electric (single-ISA) processors but

not both (heterogeneous-ISA). Car manufacturers (chip designers) can build engines with

different design choices (processors with varying design options): engines combined with

turbochargers for gasoline-powered cars, high-performance batteries combined with energy-

efficient batteries for electric-powered cars (added extended instruction sets, CPU designs

that target vastly different use cases, etc.). However, each design choice is limited to improv-

ing performance for a specific type of fuel-source based engine. For example, having battery

alternatives has no performance impact on gasoline-powered engines. As time passes by,

car manufacturers have exhausted options to make a drastic improvement to their existing

engine designs (limited performance gains in recent chips).

To tackle this problem, in this thesis, the author first examined the usage of cars: driv-

ing on the road (running applications). The author’s study found that no single engine is

suitable for all routes (no single processor is good for all workloads), and cars powered by

different fuel-source based engines showed a significant diversity in performance (applica-

tion performance varies drastically between systems with processors built on different ISAs).

Gasoline-powered cars perform well on high-speed roads, whereas electric-powered cars per-

form well on low-speed roads. Unfortunately, in real life, a person’s commute (a workload of

applications) consists of a mixture of high-speed roads and low-speed roads, and one cannot

know the exact percentage of each kind of path they travel (exact application composition

in a workload) beforehand. Therefore it is challenging for a person to make the correct car

selection for the incoming commute (choose the right system for a workload).

This thesis tries to solve this commuting problem by building a car that has multiple en-

gines fitted to suit different road needs (systems with processors that have vastly different

use cases). This thesis looks at a particular dimension of combining various fuel-powered

engines in the same car (a system with heterogeneous-ISA processors). The author believes

that adding diversity in fuel-powered engine selections provide an exciting dimension in car

design choices (adding ISA-heterogeneity in processors provide a unique dimension in sys-

tem design). Thus, this thesis focuses on estimating a theoretical multi fuel-powered car’s

performance by combining two different fuel-powered cars into a single mega-car using some

framework (Popcorn Linux). This framework allows this mega-car to be driven by a com-

bined fuel source with fuel intake freely transfer between fuel-sources (cross-ISA migration

and execution) based on road conditions (application encountered). Based on the evaluation

of this new prototype, the author finds that in a real-life scenario (workload with mixed

application combination), cars with multiple fuel-source based engines have better perfor-

mance than two single fuel-source based cars (systems with heterogeneous-ISAs processors

perform better than systems with homogeneous-ISAs processors). The author hopes that

this study can help build the foundation for the development of hybrid cars (system with

heterogeneous-ISAs in the same processor) in the future as well as the consideration of mod-

ifying existing car into a mega-car with multiple engines suited for different road needs for

improved commute performance for now.

iv

Ultimately, this thesis is not about cars. The author hopes that by explaining the re-

search done in this paper through cars, general audiences can understand what this work is

trying to investigate and what solution they have provided. In this work, we investigate the

potential of a system with heterogeneous-ISA processors. This thesis prototypes one such

system and finds that heterogeneous-ISA systems have performance benefits than traditional

homogeneous-ISA systems over a series of experiment evaluations.

v

Dedication

To my family and friends.

vi

Acknowledgments

First and foremost, I owe my deepest gratitude to my advisor Dr. Binoy Ravindran. Dr.

Ravindran opened the research door for me and helped me transition from a student to a

researcher. You have shown me patience and encouraged me to pursue a diverse range of

research topics. I learned so much from these experiences. I am forever grateful. I want to

also thank the members of my M.S advisory committee, Dr. Changwoo Min and Cameron

D. Patterson. Their advice on research-related topics helped me to formulate my thesis in

the correct direction.

My fellow lab mates at the System Software Research Group (SSRG) had a significant

influence on the success of my research. Their encouragement and knowledge helped me

identify many mistakes in my earlier designs. In particular, without Dr. Robert Lyerly’s

help on the Popcorn Linux framework, this research will likely never succeed in time. I wish

Dr. Lyerly’s the best. In addition, I also want to thank my friends and my mentor (Dr.

Xun Jian) in the High-performance, Energy-efficient, Assured Processing (HEAP) Lab at

the CS department. My research collaboration with them helped me to understand how to

formulate a research idea into a conference paper efficiently. The lessons I learned in their

group helped me significantly in publishing this work.

Furthermore, I want to thank all the friends who I met during my eight-year stay in Blacks-

burg. Without your presence in my life, I have no idea how I will survive in an isolated

location like Blacksburg.

vii

And Finally, I would like to thank my parents. They deserve so many more credits and

thanks than they will ever receive. Their decision to sent me to America for better-suited

education twelve years ago started this incredible knowledge-pursuing journey. They took

care of everything back home so that I can fully pursue my studies abroad.

viii

Contents

List of Figures xii

List of Tables xv

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Statement . 10

1.3 Thesis Contributions . 15

1.4 Thesis Organization . 17

2 Background 18

2.1 SIMD Instruction . 18

2.2 Brief LLVM Overview . 21

2.3 Popcorn Linux . 22

3 Related Work 26

3.1 CPU/GPU Computing . 27

3.2 Single-ISA Heterogeneous Computing . 27

3.3 Heterogeneous-ISA Computing . 28

ix

3.4 SIMD . 29

3.5 Workload Scheduling . 30

3.5.1 Workload Scheduling in heterogeneous systems 30

3.5.2 Contention-aware Scheduling . 31

3.5.3 NUMA-aware Scheduling . 32

4 Enabling Cross-ISA SIMD Migration 33

4.1 Definitions . 33

4.2 Selecting Migration Points . 34

4.3 Vector Unrolling . 38

5 Optimizing Cross-ISA SIMD Migration 41

5.1 Baseline Approach Overhead . 41

5.2 Profiled Guided Optimization Approach . 43

5.2.1 Profiling Stage . 43

5.2.2 Optimizing Stage . 46

6 Leverage Processor-preference for Performance Gain 51

6.1 Scheduling Policy . 51

6.2 Scheduler Setup . 55

7 Experimental Setup & Experiment Results 57

x

7.1 Experimental Setup . 57

7.2 Experiment Results . 60

7.2.1 Two-application Workloads . 60

7.2.2 Multi-application Workloads . 64

8 Conclusion & Future Works 67

8.1 Conclusion . 67

8.2 Future works . 68

Bibliography 70

xi

List of Figures

1.1 CPU trends for the last 35 years. Original Data shown in [86]. 2

1.2 Percentage slowdown of NAS Parallel Benchmarks [11], Livermoore Loops [83],

Phoenix [100], and Test Suite for Vectorizing Compilers [19] when running on

a Intel Xeon Silver 4110 core v.s. a Intel Xeon Gold 5118 core. 5

1.3 Percentage slowdown of NAS Parallel Benchmarks [11], Livermoore Loops [83],

Phoenix [100], and Test Suite for Vectorizing Compilers [19] when running on

a Cavium ThunderX core v.s. a Marvell ThunderX2 core. 6

1.4 Percentage slowdown of NAS Parallel Benchmarks [11], Livermoore Loops [83],

Phoenix [100], and Test Suite for Vectorizing Compilers [19] when running on

a Cavium ThunderX core v.s. an Intel Xeon Gold 5118 core. 7

1.5 Percentage slowdown of NAS Parallel Benchmarks [11], Livermoore Loops [83],

Phoenix [100], and Test Suite for Vectorizing Compilers [19] when running on

a Marvell ThunderX2 core v.s. an Intel Xeon Gold 5118 core. 8

1.6 Profit margin of NAS Parallel Benchmarks [11], Livermoore Loops [83], Phoenix [100],

and Test Suite for Vectorizing Compilers [19] when running on a Cavium

ThunderX core v.s. an Intel Xeon Gold 5118 core. 9

1.7 Experiment procedures. 12

1.8 System throughput under different ratios of EP/FT [11], BT/LU [11], and

Hydro [83] on two Xeon servers and two ThunderX servers. 13

xii

2.1 Scalar Add v.s. SIMD Add. 19

2.2 CPU Frequency Table for Intel Xeon Gold 5118 [1]. 20

2.3 An Overview of LLVM Major Components. 21

4.1 LLVM Basic Block Layout for SIMD instructions. 35

4.2 Baseline Approach for Supporting Cross-ISA SIMD Migration. 37

4.3 Vector Unroll Example. 39

5.1 Baseline Approach Overhead. 42

5.2 PGO Approach for Supporting Cross-ISA SIMD Migration. 43

5.3 Reverse Post-order Traversal Example [14]. 44

5.4 PGO Optimizing Stage. 46

5.5 Optimization Program Decision Tree. 47

5.6 SIMD Basic Block Split for PGO Approach. 49

5.7 PGO Approach for Supporting Cross-ISA SIMD Migration. 50

6.1 Comparing Application by Application is Inefficient. 52

6.2 Scheduler Information Storing Example in a Multi-processor (>=3 Proces-

sors) Scenario. 54

6.3 Scheduler Decision Making Process. 56

7.1 Throughput of two application workloads with 1/8 SIMD/non-SIMD ratio. . 61

7.2 Throughput of two application workloads with 1/4 SIMD/non-SIMD ratio. . 62

xiii

7.3 Throughput of multi-application workloads with 1/8 high processor-preference

(high slowdown) application ratio. 64

7.4 Throughput of multi-application workloads with 1/4 high processor-preference

(high slowdown) application ratio. 65

8.1 Throughput of het-static and x86-static on Marvell ThunderX2 [110] and

Ampere eMAG [25] servers. 69

xiv

List of Tables

1.1 Chip Unit Price Comparison. 9

7.1 Server Configurations. 58

7.2 System Configuration Cost. 58

xv

Chapter 1

Introduction

Chapter 1 helps the reader to get a better understanding of the necessity of the researches

conducted in this thesis. This chapter discusses the motivation of investigating heterogeneity

at the ISA level in processor designs. In addition, the chapter states the target problems

and lays out the thesis’s contribution. Lastly, for readers to better navigate this thesis, the

thesis organization is also provided.

This chapter starts with Section 1.1, discussing the motivations behind our research. The

problem statement is explained in Section 1.2, followed by a list of contributions in Sec-

tion 1.3. This chapter ends with Section 1.4 illustrates the thesis organization.

1.1 Motivation

For the last half of the 20th century, Intel Co-founder Gordon Moore’s prediction of the

number of transistors on a chip, also known as Moore’s Law, has set a loose guideline for

predicting future CPU performance [120]. This simple, yet influential forecast has been

solidified over the years as chip manufacturers consistently produce more and more powerful

CPUs through packing an increasing amount of transistors.

1

2 Chapter 1. Introduction

Regrettably, this trend cannot last forever. With more and more transistors crammed into

a small area, problems such as heat [2, 118], technology barriers for shrinking transistors

size [104], and increasing manufacturing costs [121] are some of the main factors that have

contributed to the limited performance gains of recent chips [17, 116]. Figure 1.1 is a plot

of microprocessor trends from 1975 to 2015 done by several scientists [86]. One of the

main conclusions drawn from this graph is that adding more transistors is not the panacea

for improving chip performance anymore. This diminishing return in chip performance is

causing many to claim that the “end of Moore’s Law” is coming [17, 30, 104, 108, 116, 121].

These phenomena have, therefore, forced chip designers to advance performance and energy

efficiency boundaries elsewhere.

Figure 1.1: CPU trends for the last 35 years. Original Data shown in [86].

1.1. Motivation 3

Thus, in recent years, the computer architecture landscape has seen the rise of systems

integrating heterogeneous architectures as a possible solution to deal with the “end of Moore’s

Law” [17, 30, 104, 108, 116, 121]. Chip designers have explored the pairing of CPU designs

that target vastly different use cases. For example, ARM’s “big.LITTLE” technology [84]

and its successor, “DynamIQ” [78], couple cache-coherent “big” cores (high clock speeds,

advanced micro-architecture) for latency-sensitive workloads with “little” cores (high energy

efficiency) for background and low-priority tasks. In the server space, Intel “Xeon-Xeon

Phi” systems [31] integrate a small number of high-performance cores with many low-power

cores to accelerate different workloads. Intel has also released plans for a heterogeneous x86

architecture with one big Sunny Cove core and multiple small Atom cores, which use a new

3D stacking technology [45, 93, 103, 126]. Some designers even expanded their exploration

space further by exploring performance gain through other components in a computer system.

For example, increasing performance through in or near memory computing has been a rising

topic in the scientific community [73, 111].

Unfortunately, existing CPU designs do not have heterogeneity at the Instruction Set Ar-

chitecture (ISA) level for general-purpose CPUs. At best, some cores used in these designs

support extended instruction sets, but at their base, all cores share the same ISA (e.g.,

x86-64 ISA for “Xeon-Xeon Phi” [31], AArch64 for ARM “big.LITTLE” [84] and ARM

“DynamIQ” [78]). To date, there have not been any commodity-scale systems that have

processors with heterogeneity at the ISA level (a notable exception is MPSoCs for embed-

ded systems [48]). The lack of heterogeneity in today’s systems is also reinforced by the

fact that most data centers consist only of servers with x86-based processors [53, 80, 101,

105]. Restricting processors to a single ISA eliminates a vital dimension of processor de-

sign. Fortunately, the research community has been exploring experimental heterogeneous-

ISA processor designs, showing that they provide better performance and energy efficiency

4 Chapter 1. Introduction

than single-ISA heterogeneity. New innovative designs – shared-memory chip multiproces-

sors [12, 114, 116], independent cache-coherent domains processors [57, 72], and cores using

a superset ISA [115] – span across many settings, ranging from cluster architectures [91] to

mobile environments [68].

Recently, the industry has become more and more welcoming to the idea of heterogeneity in

server systems. With the advent of ARM-based high-end servers [25, 109, 110], capable of

powering high-performance computing (HPC) applications, third-party organizations, such

as data-center providers and cloud providers, are increasingly integrating machines of differ-

ent ISA families in their computing installations [5]. Chip vendors are also integrating CPUs

of different ISA families in the same SoC or on the same platform. For example, the Intel

Skylake processor with in-package FPGA [32, 52] is capable of synthesizing RISC-V and x86

soft cores; smart NICs integrate ARM [40, 88] or MIPS64 [82] on the same platform.

Heterogeneity brings an additional dimension in processor-diversity. This work studies one

set of processor-diversity, processors built with different ISAs, to determine whether pro-

cessors with heterogeneity at ISA-level can be leveraged for improved performance. To our

knowledge, in the server space, no one has extensively investigated the impact of heterogene-

ity at the ISA-level on CPUs in terms of performance and cost.

To reveal the performance difference between server systems with different ISAs, we ran

applications from four popular HPC benchmark suites and calculated the slowdown of each

single-threaded benchmark in four different system settings. The selected benchmarks in-

clude the NAS Parallel Benchmark (NPB) suite [11], Phoenix Benchmark suite (PHX) [100],

Livermore Loops suite (LL) [83], and Test Suite for Vectorizing Compilers (TSVC) [19]. We

ran two experiments that compared servers with the same type of ISA as a baseline: Cavium

ThunderX v.s. Marvell ThunderX2, and Intel Xeon Silver 4110 v.s. Intel Xeon Gold 5118.

We then ran two additional experiments that compared servers with different ISAs: Cavium

1.1. Motivation 5

Figure 1.2: Percentage slowdown of NAS Parallel Benchmarks [11], Livermoore Loops [83],
Phoenix [100], and Test Suite for Vectorizing Compilers [19] when running on a Intel Xeon
Silver 4110 core v.s. a Intel Xeon Gold 5118 core.

ThunderX v.s. Intel Xeon-Gold 5118 and Marvell ThunderX2 v.s. Intel Xeon-Gold 5118.

For all servers, we used factory-specified settings.

Figure 1.2 and Figure 1.3 show the performance differences between servers with the same

type of ISAs. For servers belonging to the same generation (Intel Xeon Silver 4110 and

Intel Xeon Gold 5118), application performance varied within 20%. For servers that were

released between different generations (Cavium ThunderX and Marvell ThunderX2), most

applications’ performance varied within 100%. This result is not surprising, considering that

ARM-based servers just entered the market and have not optimized thoroughly compared to

their x86 counterparts. Thus, different generations of ARM chips likely yield more significant

performance improvement.

6 Chapter 1. Introduction

Figure 1.3: Percentage slowdown of NAS Parallel Benchmarks [11], Livermoore Loops [83],
Phoenix [100], and Test Suite for Vectorizing Compilers [19] when running on a Cavium
ThunderX core v.s. a Marvell ThunderX2 core.

However, the slowdown difference between servers with the same type of ISA is negligible

when compared to servers with different types of ISAs. Figure 1.4 shows the relative perfor-

mance of single-threaded applications using one core of the Cavium ThunderX machine (96

cores, ARMv8 ISA) [109], in comparison to one core of the Intel Xeon Gold 5118 machine

(12-core/24-thread, x86-64 ISA) [52]. Figure 1.5 shows the same performance compared

to the same Intel core with a newer ARM model, Cavium Thunder X2. In both figures,

the minimum application slowdown is more than 200%, with some reaching more than

2000% slowdown (VPVTS in Cavium ThunderX v.s.Intel Xeon Gold 5118). Based on these

preliminary results, heterogeneity at ISA-level does bring significant processor diversity as

application performance varies drastically on processors built with different ISAs.

1.1. Motivation 7

0 500 1000 1500 2000 2500

NPB_EP

PHX_K-means

NPB_FT

NPB_UA

NPB_BT

NPB_LU

NPB_CG

LL_Hydro

TSVC_VPVTS

% Slowdown
Figure 1.4: Percentage slowdown of NAS Parallel Benchmarks [11], Livermoore Loops [83],
Phoenix [100], and Test Suite for Vectorizing Compilers [19] when running on a Cavium
ThunderX core v.s. an Intel Xeon Gold 5118 core.

Figure 1.4 and Figure 1.5 also reveal that all applications are slower on either ARM servers

but differ in the degree of slowdown. It is worth noting that the ARM core slowdown is not

surprising, given that each Xeon core is clocked faster, and both ThunderX and ThunderX2

cores have different processor design goals, trading off single-core performance for massive

parallelism. As a result, there are significantly more ARM cores (48 cores in ThunderX and

28 cores in ThunderX2) in the ThunderX CPU family.

Based on the previous four experiments, if processor design choices solely determined based

on application performance, processors with heterogeneity at ISA level have no performance

advantage over homogeneous-ISA processors. System architects with unlimited resources

should always choose the faster x86-based core. Unfortunately, the system cost is a servere

constraint in system designs. Processor design choices heavily depend on the profit of the

final product, and most system architects start with limited budgets. Thus, to convince

8 Chapter 1. Introduction

Figure 1.5: Percentage slowdown of NAS Parallel Benchmarks [11], Livermoore Loops [83],
Phoenix [100], and Test Suite for Vectorizing Compilers [19] when running on a Marvell
ThunderX2 core v.s. an Intel Xeon Gold 5118 core.

industry leaders to consider using ISA-heterogeneity in their future processor designs, one

must convince that packing heterogeneous-ISA processor designs can have better a profit

margin than existing homogeneous-ISA based processor designs. In this paper, the profit

margin is mathematical formula defined as :
∆ofPerformanceforNewDesign

∆ofCostforNewDesign
> 1

Fortunately, the price of x86-based cores and ARM-based cores are very different. Table 1.1

shows the cost of each CPU used in this experiment. The unit price of x86-based cores is

usually higher than their ARM counterparts. With the combination of varying chip costs

and performance slowdown, it is hard not to ask the question: is there an advantage of using

a heterogeneous-ISA system to improve performance without sacrificing cost?

1.1. Motivation 9

Chip ISA Core Count Year Unit Price Adjusted $/HT
Intel Xeon Silver 4110 X86 8/16 HT 2017 $501 [50] $501 $31.31
Intel Xeon Gold 5118 X86 12/24 HT 2017 $1273 [51] $1273 $53.04
Cavium ThunderX CN8890 ARMv8 48 2016 $795 [20] $607 $16.56
Marvell ThunderX2 CN9980 ARMv8 32/128 HT 2018 $1795 [58] $1662 $14.02

Table 1.1: Chip Unit Price Comparison.

Figure 1.6: Profit margin of NAS Parallel Benchmarks [11], Livermoore Loops [83],
Phoenix [100], and Test Suite for Vectorizing Compilers [19] when running on a Cavium
ThunderX core v.s. an Intel Xeon Gold 5118 core.

Figure 1.6 shows the profit margin of the Cavium ThunderX vs. Intel Xeon Gold 5118

single-core performance comparison. This time, heterogeneity at ISA-level shows promising

signs. Based on the mathematical formula, a profit margin of fewer than one means for every

dollar spent, you are getting less than one dollar worth of production. In short, it is not

profitable to run on the faster Xeon Gold core. In this figure, three benchmarks experiences

profit margin lower than one with three more have a profit margin slightly over one. This

evaluation shows that the processor-diversity brought by the use of heterogeneous-ISAs can

potentially improve performance within the same budget.

10 Chapter 1. Introduction

1.2 Problem Statement

Venkat et al. [114] and Akram et al. [3, 4] are some of the first pioneers studying the impact

of ISAs on performance. Their research shows that ISAs can affect application performance,

and applications have ISA-affinities: each application has a natural ISA preference. How-

ever, each processor is designed differently. It is almost impossible to calculate the ISA’s

impact on application performance in a real system. Many factors (number of stages in

the pipeline, cache size, etc.) can be attributed to the performance slowdown. Thus, to be

more precise, this thesis decided to define and use the phrase processor-preference instead

of ISA-affinity. Processor-preference means that each application has a natural processor-

preference in a selected group of processors. The performance impact of each processor

design decision (e.g., what ISA to use) is ignored; this thesis instead focuses on the over-

all processor performance that includes all design decisions. In this case, all applications

tested earlier have processor-preference to the x86-based Xeon Gold 5118 processor. This

research investigates the fluctuation of processor-preference between applications, and this

fluctuation of processor-preferences matters in heterogeneous system designs. An applica-

tion experiencing a 2000% slowdown and another application experiencing a 200% slowdown

both have processor-preference for the faster core. Still, the benefit they get by executing on

the faster core is widely different (20X speedup v.s. 2X speedup). The lower speed up gain

from applications with low processor-preference preference can sometimes be mitigated by

running them on cheaper and slower cores in parallel. In our case, ARM-based processors are

designed with more cores in a system and with lower unit prices. This diversity in processor

designs means that, for applications that experience low processor-preference (applications

that are experiencing low slowdowns when running on non-optimal processor cores), it is

not immediately clear which system provides the best throughput within the similar price

budget.

1.2. Problem Statement 11

Given the fact that x86-based servers dominate data centers today [12], this begs the ques-

tion, are x86-based servers indeed the clear winner for running diverse workloads within a

similar price budget?

To find out if there is a clear winner in throughput when running diverse workloads, we

performed another study. We selected five benchmarks, EP, FT, BT, LU, and Hydro, based

on their respective slowdown results from Figure 1.4. We ran them with a variety of different

composition ratios for a given workload on a pair of Cavium ThunderX and Intel Xeon Gold

5118 servers used for the earlier slowdown experiments. Our Cavium ThunderX server has

two processors; thus, the total cost amounts to $1214, which is within a similar price range

to Xeon 5118 ($1273). These five benchmarks are chosen because they represent benchmarks

that experience various degrees of slowdown, hence, benchmarks with different degrees of

processor-preference. EP and FT suffered relatively low slowdown (2-3X) on the ARM

servers; BT and LU suffered a slightly higher slowdown (5-6X); whereas, Hydro suffered the

most substantial slowdown among all with more than 20X slowdown in performance. For

ease of comparison, we treated EP and FT as the same type of benchmark (low processor-

preference benchmarks); the same also applies to BT and LU (medium processor-preference

benchmarks). Therefore, there will be a single ratio for both types of benchmarks.

Figure 1.7 illustrates how our experiments are performed. For each scenario, a workload

batch with a predefined ratio of each benchmark is generated first in a vanilla Linux Ker-

nel. Then some randomly selected benchmarks from this newly created workload batch

are executed until all available physical threads are occupied without overloading the CPU.

Afterward, whenever a running benchmark finished execution, another random benchmark

from the remaining workload batch was selected and executed. If the workload batch in wait-

ing was empty, a new workload batch with the same predefined ratio was generated again.

This process repeated until the evaluation period ended. To ensure a fair comparison, we

12 Chapter 1. Introduction

Figure 1.7: Experiment procedures.

used the same random seed so that each configuration had the same benchmark selection

outcome for every run. Each experiment was run for 75 minutes. The rationale behind this

evaluation time selection was that most of the benchmarks execute in about 3 to 5 minutes

when running on the server with Intel Xeon Gold 5118 CPU; 75 minutes was long enough

to mitigate the impact of noise. In this experiment, we compared the system throughput of

each scenario, i.e., the number of benchmarks completed in 75 minutes.

Figure 1.8 shows the result of our study. Neither the x86-based nor the ARM-based servers

had a clear advantage in all tested scenarios. x86-based servers have a higher through-

put when there is an increasing number of relatively high processor-preference benchmarks

(BT/LU/Hydro). In contrast, ARM-based servers perform better when the workload is

1.2. Problem Statement 13

Figure 1.8: System throughput under different ratios of EP/FT [11], BT/LU [11], and
Hydro [83] on two Xeon servers and two ThunderX servers.

mainly composed of low processor-preference benchmarks (EP/FT).

These results again reinforce the idea that each application has a natural processor-preference.

Still, their processor-preference may not be all that significant to have a de facto processor

for all workloads with costs accounted for. Thus, how to maximize harnessing processor-

preference may be an exciting research question and may provide a quality solution to chip

designers in the future. Due to the fact there is no commercial heterogeneous-ISA chip

multiprocessor with cache-coherent shared memory available in today’s market, we used

the Popcorn Linux Framework [12] to provide the basis for us to explore processor-diverse

heterogeneous-ISA servers. Popcorn Linux allowed us to emulate a heterogeneous-ISA server

through high speed interconnect. In Chapter 2, we will give a detailed example of how the

Popcorn Linux Framework achieved cross-ISA migration. Because of the engineering work

required and the lack of human resources, this framework has not been able to port to all

machines available to us. Currently, Cavium ThunderX is the only ARM server that is

capable of using the Popcorn Linux Framework. Thus, to show that harnessing processor-

preference in processor diverse heterogeneous-ISA systems is beneficial, we want to focus on

investigating the performance slowdown for Cavium ThunderX vs. Intel Xeon Gold 5118, as

14 Chapter 1. Introduction

shown in Figure 1.4 and identify bottlenecks and provide a solution that leverages processor-

preference. Due to the similar price range between the two servers, the performance increase

will indicate a better profit margin. Lastly, We hope that our research will provide a valu-

able case study for future researchers to improve system performance through leveraging

processor-diversity in heterogeneous-ISA systems.

Further inspection of the highest slowdown benchmarks of Cavium ThunderX in Figure 1.4

revealed that benchmarks such as Hydro and VPVTS contain significant portions of single-

instruction-multiple-data (SIMD) instructions, accounting for more than 80% of benchmark

execution time. A more detailed explanation of why SIMD instruction-dominated programs

have a processor-preference to x86-based processors than ARM-based processors will be pro-

vided in the background section of this thesis. Unfortunately, based on our findings, the

original Popcorn Linux Framework does not support the migration of SIMD instructions.

With SIMD instructions gaining more attention from chip designers as a means to extract

additional data parallelism in various application domains (e.g., HPC [10], ML [98, 122],

computer vision [29, 92], cryptography [6, 61, 119], and other domains [37, 125]), coupling

together heterogeneous machines that have significant differences in processor designs and

SIMD extensions provides an exciting platform for running diverse applications. This unique

system pairing also reinforces the need for a commodity heterogeneous-ISA chip multipro-

cessor with cache-coherent shared memory in the future. Thus, to fully enable research

in leveraging processor-preference in processor-diverse heterogeneous-ISA systems, we need

first to allow the Popcorn Linux Framework to support cross-ISA SIMD migration.

1.3. Thesis Contributions 15

For designers aiming to harness processor-preference to optimize the performance in a processor-

diverse heterogeneous-ISA system with a controlled budget, this raises interesting questions:

1. How should a workload consisting of applications with a mixture of processor-preferences

be scheduled to maximize throughput?

2. What is the impact of an application’s processor-preference on the execution of co-

executing workloads?

3. Are there throughput advantages in migrating applications across ISAs based on their

processor-preference?

4. Are there advantages of adding the dimension of ISA-diversity to future processor

designs?

1.3 Thesis Contributions

In this thesis, we investigated a specific dimension of system design choices, a system with

heterogeneous-ISA chip multiprocessors. Such processor design diversity allowed us to ex-

plore scheduling batch workloads consisting of applications with various degrees of processor-

preference on heterogeneous-ISA systems. We analyzed the effects of how applications with

different processor-preference interact on both x86 and ARM systems. Additionally, we an-

alyzed the impact of processor-diversity on system utilization, including where applications

should be scheduled to maximize throughput. To conduct this investigation, we extended

Popcorn Linux [12], an OS/compiler/run-time system framework, for executing and migrat-

ing shared-memory applications across non-cache-coherent heterogeneous-ISA CPUs.

16 Chapter 1. Introduction

This thesis makes the following contributions:

• We developed a cross-ISA SIMD migration compiler/run-time framework that enables

applications containing SIMD instructions to be migrated between heterogeneous-ISA

CPUs with different SIMD register widths. The framework is built as an extension of

Popcorn Linux’s [12] compiler/run-time system infrastructure.

• We analyzed the effects of co-executing applications with different processor-preferences

on a heterogeneous-ISA system to understand the impact of processor-preference and

workload composition on system throughput.

• We used insights gained from our analysis and developed a processor-preference-aware

scheduler that monitors system workload and migrates applications dynamically. When

used on our prototype heterogeneous-ISA system, our evaluations revealed up to 36%

throughput gains over the next best homogeneous-ISA system within a similar price

budget.

• We showed that harnessing processor-diversity in heterogeneous-ISA systems have per-

formance improvement through a case study of pairing an Intel Xeon Gold 5118 to a

Cavium ThunderX server using the Popcorn Linux Framework.

• We demonstrated that by having diversity in system processor choices, there exists a

possibility of leveraging processor-preference for improved performance.

• We reinforced the support for developing a commodity heterogeneous-ISA chip multi-

processor with cache-coherent shared memory.

1.4. Thesis Organization 17

1.4 Thesis Organization

The rest of this thesis is organized as follows: Chapter 2 presents the necessary background on

SIMD instruction and LLVM Infrastructure. For completeness, we also summarize Popcorn

Linux’s [12] cross-ISA execution migration infrastructure. A Survey of related work is dis-

cussed in Chapter 3. Chapter 4 describes our method to enable basic cross-ISA SIMD migra-

tion, and Chapter 5 illustrates a more optimized approach. Chapter 6 details our processor-

preference-aware scheduler. Chapter 7 illustrates our experimental setup and presents our

results. Conclusion and future research direction is discussed last in Chapter 8.

Chapter 2

Background

This chapter presents relevant background information to understand this thesis. This chap-

ter contains information on how SIMD instruction is used in today’s system as a means to

extracting additional data parallelism and why SIMD applications in our current system se-

tups show extreme high preference to x86 ISA-based processors in our existing experiments.

Chapter 2 also provides a brief overview of major components in LLVM compiler infrastruc-

ture to give the audience a clear picture of where our modifications are done. Because our

design built on top of the Popcorn Linux Framework [12], we also explain how the Popcorn

Linux Framework achieved cross-ISA migration.

This chapter starts with information on SIMD instructions in Section 3.4, followed by a brief

overview of LLVM components in Section 2.2 and ends with the explanation of cross-ISA

execution migration on Popcorn Linux in Section 2.3.

2.1 SIMD Instruction

Single instruction multiple data(SIMD) is one of the four classifications in Flynn’s taxonomy.

A processor that supports SIMD instructions can issue a single SIMD operation that operates

on multiple data elements. Figure 2.1 illustrates the difference between traditional scalar

processing v.s. SIMD processing. SIMD instructions help both execute multiple operations

in parallel and amortize CPU core front-end costs (instruction cache pressure, decoding/issue

18

2.1. SIMD Instruction 19

Figure 2.1: Scalar Add v.s. SIMD Add.

latency) and is thus an attractive method of extending the ISA to the chip designers. For

example, Intel continues to widen its SIMD variant, AVX vector extensions, to 512 bits [49],

and add new capabilities such as neural network instructions [18].

Similarly, ARM has introduced its SIMD support, Scalable Vector Extension [8], with width-

agnostic instructions to complement its existing NEON SIMD extension [7]. ARM NEON

SIMD extension with has a SIMD register width of 128 bit. The four times difference in

SIMD register width (512 bits v.s. 128 bits) allows x86-based CPU with AVX512 extension

to calculate four-times more element per SIMD instruction than its ARM counterparts. This

difference in calculation power explains why SIMD-instruction dominated applications such

as Hydro and VPVTS have a higher preference toward x86 ISA-based processor.

Extending SIMD register width does not come for free – since the processor executes multiple

instructions at once, cores consume significantly more power. Thus the processor must

reduce clock speeds to avoid overheating the chip. Intel’s processor is a perfect example

20 Chapter 2. Background

Figure 2.2: CPU Frequency Table for Intel Xeon Gold 5118 [1].

of this trade-off. Intel CPUs use dynamic voltage frequency scaling (DVFS) to change

CPU frequency during runtime. When the CPU encounters SIMD-intensive code, it scales

down the CPU frequency (known as AVX frequency) dramatically in order to limit power

consumption and reduce heat this lower frequency. Table 2.2 shows the CPU frequency under

different SIMD workloads for the Intel Xeon Gold 5118 CPU used in this thesis. Despite

the extra heat generated, the benefits of using SIMD instructions (up to 16 times more

calculations per SIMD instruction than scalar instructions) outweighs the benefit of using

traditional scalar instructions(having approximately 69% more CPU frequency under full

workload). Therefore, extending the Popcorn Linux Framework to support SIMD extension

is still necessary as we need the capability to migrate high x86 processor-preference SIMD

applications away from ARM-based servers.

2.2. Brief LLVM Overview 21

2.2 Brief LLVM Overview

LLVM is an industrial-grade compiler that is widely embraced by the academic community.

Although there are other compiler options available [36, 106], we decided to stick with LLVM

in order to reduce unnecessary engineering efforts(the original Popcorn Linux compiler is

modified on-top of LLVM). Due to LLVM’s complexity, this thesis will only explain two

aspects of LLVM: an overview of major components and built-in Profile Guided Optimization

(PGO) capability.

Figure 2.3: An Overview of LLVM Major Components.

Figure 2.3 shows an overview of LLVM’s major components. Like most modern compiler

architectures, LLVM contains three parts, a front end (Clang), middle-end, and back end.

The front end, also known as clang, takes source code and transform it to LLVM’s inter-

mediate representation (IR), which is platform-independent. LLVM’s middle-end consists of

multiple passes that aimed to analyze, optimize, and otherwise transform LLVM IR [66] in a

user-defined sequence. In this thesis, our supports for extending cross-ISA SIMD migration

for both approaches are done in the middle-end. Lastly, the back end lowers LLVM IR to

ISA-specific machine code.

Profile Guided Optimization (PGO) is an advanced optimization approach deployed in

LLVM. The goal of this approach is to optimization application by providing the compiler

profiled runtime information at compile time to aid code generation [16]. Clang currently

22 Chapter 2. Background

supports two profile modes: sampling profiling and instrumented profiling [77]. Sample

profiling has a low runtime profile but also less efficient in building efficient programs. In-

strument profiling has a higher runtime profile but is more efficient in optimizing programs.

After either profiling stage completes, LLVM transforms profiled data into a usable messag-

ing format, and recompile the application with this additional information, LLVM recompile

the code with better optimizations [75]. In our proposed PGO-based approach, our design

shared the same concept as the instrumented profiling approach.

2.3 Popcorn Linux

Currently, there does not exist a commodity heterogeneous-ISA chip multiprocessor with

cache-coherent shared memory. To approximate such a machine, we connected an Intel

Xeon server (x86-64) to a Cavium ThunderX server (ARMv8) via Infiniband. To support

cross-ISA execution, the system software must provide two capabilities: i) the ability to

migrate threads and ii) the ability to migrate an application’s data between the servers.

We build on Popcorn Linux [12], an operating system, compiler, and runtime that provides

system software support for cross-ISA execution migration.

Popcorn Linux uses a replicated-kernel OS design, where kernels on separate machines com-

municate via message passing to provide user applications the illusion of a single machine.

The OS provides a thread migration service, whereby threads call into the kernel and trans-

parently resume execution on the destination architecture. Underneath, the originating

kernel (origin) transfers the thread’s context to the destination kernel (remote) to be re-

instantiated and returned to user-space. Additionally, the OS provides a page migration

service that transfers an application’s data between machines on demand. When initially

migrated to a new machine, the application has no pages mapped into memory – all mem-

2.3. Popcorn Linux 23

ory accesses result in page faults. The OS’s page fault handler is modified to intercept the

faulting accesses, allowing the kernels to observe data accessed by threads and coordinate

to migrate page data between machines. Pages are unmapped from the origin and mapped

into the thread’s address space on the remote.

While these capabilities are sufficient for migrating threads and application data pages be-

tween machines, they are not sufficient for cross-ISA execution. Popcorn Linux’s compiler

generates multi-ISA binaries that are suitable for cross-ISA execution. In multi-ISA binaries,

the application’s virtual address space is aligned so that references to symbols (global data,

function addresses) are identical across all architectures. For execution state that is tailored

to each ISA’s capabilities (stack, register set), the compiler generates metadata describing

the function activation layout.

When migrating between architectures, Popcorn Linux’s run-time parses the metadata for

all function activations currently on the stack and transforms them between ISA-specific

formats. After this state transformation, the runtime hands the new stack and register set

to the OS’s thread migration service to be restarted on the destination architecture. By

aligning as much of the virtual address space as possible and only transforming the pieces

that are tailored to each ISA, most of the application’s state is valid across architectures,

incurring minimal thread and data migration time.

In order to generate multi-ISA binaries, Popcorn Linux’s compiler builds on LLVM’s mod-

ularity to generate object files for all target architectures. The compiler’s front-ends and

middle-ends generate optimized LLVM bitcode from the application source. Threads can

only migrate between architectures at equivalence points [117], i.e., points where execution

has reached a semantically equivalent location and there exists a valid mapping between each

ISA’s execution state. A pass inserts call-outs to a migration library at equivalence points

to enable thread migration between architectures. Because threads can only migrate at the

24 Chapter 2. Background

inserted call-outs, there is a tradeoff between how many migration points are inserted into

the code (and the associated call overheads) versus how long it takes a thread to respond to

a migration request. Finally, a pass tags each call site with metadata describing all the live

values at that location, as the run-time must be able to recreate the sequence of all function

activations in the destination ISA’s format.

The LLVM bitcode instrumented with migration points and live value metadata is passed to

all target ISA backends for code generation. As the bitcode is lowered to machine code for

each ISA, the backend records the locations of the live values specified by the middle-end,

i.e., stored in a register or a stack slot. Note that the same set of live values is passed to each

backend, and thus the same values are alive at each call site, meaning the runtime only needs

to determine where to copy each live value for each ISA. In addition to live value locations,

the compiler records per-function information such as callee-saved register locations and

frame sizes. Each call site is also tagged with a unique ID to correlate call sites across

architectures at run-time. The linker takes the object files for each architecture as input

and emits a multi-ISA binary with an aligned virtual address space and the transformation

metadata.

At run-time, threads execute like normal threads. When threads reach a migration point,

they call out to the migration library to check if migration was requested, and if so, migrate

to the requested destination. Threads check for migration requests via syscall – the kernel

maintains a per-thread flag that can be set within the application or by external processes.

If a migration is requested, the thread takes a snapshot of its current register set and begins

transforming its stack and register set. First, the thread unwinds its stack to determine

which activations are currently alive and to load each function’s metadata. Next, the thread

goes frame-by-frame from the most recently called function inwards, copying live values to

the correct destination-ISA location. After transformation, the runtime passes the trans-

2.3. Popcorn Linux 25

formed register set for the outermost function to the OS’s thread migration service. The

kernel transfers the register set to the destination, which instantiates a new thread with the

transformed register set and returns the thread to userspace. The thread exits the runtime

on the destination and resumes normal execution as if it were still executing on the same

machine.

Chapter 3

Related Work

This chapter discusses research in related fields. The problem space for this thesis mainly lies

in heterogeneous computing. However, for a related work survey, this thesis classifies het-

erogeneous computing into three different areas: CPU/GPU Computing, single-ISA hetero-

geneous computing, and heterogeneous-ISA computing. Besides heterogeneous computing,

our work also involves extending support for SIMD instructions in a particular (Popcorn

Linux) framework and our purposed scheduling techniques touch techniques in workload

scheduling domain as well. Surveys of workload scheduling techniques in this thesis are

also classified into three different areas: workload scheduling in heterogeneous-ISA systems,

contention-aware scheduling, and NUMA-aware scheduling.

This chapter starts with three research areas in heterogeneous computing: Section 3.1 for

CPU/GPU computing, Section 3.2 for single-ISA heterogeneous computing, and Section 3.3

for heterogeneous-ISA computing. Then this chapter describes related work done in the

SIMD field in Section 3.4. Finally, this chapter ends up with Section 3.5 discussing related

work in the workload scheduling domain.

26

3.1. CPU/GPU Computing 27

3.1 CPU/GPU Computing

The vast majority of past efforts in heterogeneous computing focus on CPU/GPU sys-

tems [38, 85] in which a GPU accelerator device is attached to a host CPU [69, 89, 90, 102].

One of the major problems for process migration between CPU and GPU is that migration

requires writing target-specific code. This step usually requires code modifications from the

programmer’s end. Much research aimed to solve this automatic offloading to GPU through

some checkpointing technique. Gad et al. [38] used static analysis and combined it with

runtime heap information gathering to achieve automatic context migration. Karablieh et

al. [56] proposed a checkpoint technique using POSIX threads. Xu et al. [124] proposed

a checkpoint technique for fault-tolerant CPU/GPU systems. Our work provided process

migration through stack rewriting and should be able to extend support for offloading to

GPU with minor modifications.

3.2 Single-ISA Heterogeneous Computing

Single-ISA heterogeneous computing uses cores of the same ISA but with different ISA

extensions or micro-architecture. Kumar et al. [62] first proposed the single-ISA heteroge-

neous architecture in 2003 as a solution to reduce processor energy usage. Kumar continued

exploring this field by investigating multi-threaded workload [63] and architecture optimiza-

tion [64] on single-ISA heterogeneous cores. These researches successfully contributed to their

commercial adaptations, such as ARM’s “big.LITTLE” [39], “DynamIQ” [78], and Nvidia’s

“Kal-El” [90]. Researchers use this new architecture to explore areas such as resource parti-

tioning [46], program scheduling [22, 26, 113], and in/near memory computing [59].

28 Chapter 3. Related Work

3.3 Heterogeneous-ISA Computing

More recently, there have been several studies on heterogeneous-ISA systems [12, 68, 72, 114,

115]. Venkat et al. [114] investigate the design space of heterogeneous ISAs using general-

purpose processors (e.g., x86, Thumb, Alpha) to evaluate their effectiveness for improving

performance and energy. Their work reveals that many applications, especially in the HPC

domain, exhibit better performance, and energy efficiency, often in different program phases.

Akram further studied the impact of ISAs on processor performance in 2017 [3, 4]. Exploit-

ing processor-preference for performance and energy gains on heterogeneous-ISA systems re-

quires a cross-ISA execution migration infrastructure, which can transform the program state

from one ISA format to another and migrate execution to the optimal-ISA core. Barbalace

et al. [12] present a complete software stack – Popcorn Linux – that supports a cross-ISA

execution migration infrastructure, which we summarize in Chapter 2. These efforts do not

seem to consider cross-ISA migration inside SIMD regions – precisely the problem that we

study. We extended Barbalace’s [12] compiler and run-time for cross-ISA SIMD migration.

Lee et al. [68] investigated the offloading of compute-heavy workloads from mobile platforms,

which often use RISC-style ISAs such as ARM, to server platforms that use CISC-style ISAs

such as x86. They presented a compiler infrastructure that generates binaries that can ex-

ecute on multiple ISAs, such as those with uniform memory layouts, address conversion

code, endianness translation/conversion code, and a run-time system for orchestrating the

offloading of computations across ISA-different platforms. We do not consider offloading

tasks because our goal is to maximize throughput, which requires us to utilize both servers

as much as possible, rather than having one platform wait for the completion of the offloaded

tasks. Offloading and migrating processes are also different in terms of process execution

sequence. Offloaded processes require synchronization at the end of the offloaded computa-

3.4. SIMD 29

tion with their parent processes, and exit at the original platform. In contrast, a migrated

process can exit on the migrated architecture since its call stack is transformed.

The paper of Lin et al. [72] is very similar to Barbalace’s Popcorn Linux work [12], but

focuses on the mobile incoherent domain SoCs, whereas our work focuses on the server space

with general-purpose CPUs. Venkat et al. [115] focuses on leveraging a single large superset

ISA composed of fully custom ISAs but scopes out cross-ISA migration and lacks a real

prototype.

3.4 SIMD

With SIMD gaining more attention from chip vendors [7, 49, 65] as a means to extract

additional data parallelism, research interest in this space has also surged. Most efforts focus

on redesigning algorithms to leverage SIMD instructions [21, 41, 44, 47, 95], exploring SIMD

usage in new application domains [23, 27, 42, 123], and improving SIMD code generation at

the compiler level [9, 34]. SIMD instructions have also been considered in dynamic binary

translation (DBT) efforts [24, 33, 35, 43, 71, 74, 94], which focus on the efficient translation

of SIMD registers between ISAs. In addition to cross-ISA SIMD translations at migration

points, our work also conducts SIMD-aware scheduling to maximize system throughput of

workloads composed of applications with or without SIMD usages – entirely out of scope for

DBT efforts.

30 Chapter 3. Related Work

3.5 Workload Scheduling

Workload scheduling has been studied extensively under many scenarios. Our work focuses

on workload scheduling in heterogeneous systems and, more specifically, heterogeneous-ISA

systems. However, our design is also influenced by scheduling techniques in other domains.

Thus, in this section, we will discuss the related works in several scheduling disciplines that

range from workload scheduling for heterogeneous systems to NUMA-aware scheduling.

3.5.1 Workload Scheduling in heterogeneous systems

Workload scheduling in heterogeneous systems has been consistently receiving attention

from the research community. However, most of these efforts focus on single-ISA heteroge-

neous systems, where the heterogeneity is in terms of execution frequency [79, 97], micro-

architecture [60], cache sizes [55], asymmetric interconnect [70], or performance goals [96,

112]. These schedulers follow the same principle of allocating resources to applications based

on their resource demand – e.g., if an application requires a higher usage of a resource (fre-

quency, micro-architectural features, cache line), an attempt is made to grant that resource.

Workload Scheduling in heterogeneous-ISA systems has received less attention. Beisel et

al. [13] extend the Linux Complete Fair Scheduler (CFS) to support cooperative multitask-

ing for heterogeneous accelerators (CPU/GPU). The scheduler in the paper of Barbalace et

al. [12] only balances thread counts across ISA-different cores. More recently, Prodromou et

al. [99] present a machine learning-based program performance predictor that drives an ML-

based heterogeneous-ISA job scheduler. These works have ignored migration costs as well

as processor-preference’s impact on system performance. Karaoui et al. [57] present sched-

ulers for heterogeneous-ISA systems, Although these schedulers consider migration costs but

ignore SIMD extension.

3.5. Workload Scheduling 31

Our work is one of the few that accounts for actual system migration costs, ISA-different

SIMD extension differences, and application’s processor-preferences.

When designing our schedulers, we need to not only account for the heterogeneity in the

system aspect but also how to efficiently schedule applications within the same system. With

this in mind, our design is also influenced by scheduling techniques in other domains, such

as contention-aware scheduling and NUMA-aware scheduling. These well-researched fields

provide us with more insights on how to improve our processor-preference-aware scheduling

decisions.

3.5.2 Contention-aware Scheduling

A contention-aware scheduler [54, 81, 127] focuses on minimizing contention in a system

through classifying and co-locating compatible applications in the same memory domain [111].

Jaleel et al. [54] schedule single-thread applications dynamically based on the application

impact on each other. Based on their LLC behavior, their design classifies applications into

four different categories and applies fixed scheduling policies accordingly. In our work, we

also want to identify suitable application pairings if the underlying systems support mul-

tithreading. Thus, for our scheduling policy, we classify applications into three different

categories. However, our selection metric is based on the application’s processor-preference

(degree of application execution slowdown between running on different processors).

32 Chapter 3. Related Work

3.5.3 NUMA-aware Scheduling

A NUMA-aware scheduler focuses on how to schedule applications across NUMA nodes.

A system consists of multiple NUMA nodes is becoming more and more important in the

scheduling field as multiple NUMA sockets are common in today’s servers. Because our work

aims for generic heterogeneous-ISA systems, we also need to account for servers that have

multiple NUMA-nodes. Tam et al. [107] place threads with the same frequency of sharing

and places them in the same socket. Blagodurov et al. [15] group single-thread applications,

so that each group has almost equivalent memory usage, and places these newly formed

groups into different sockets, and migrate pages along with their threads. Lepers et al. [70]

schedule applications based on maximizing bandwidth for communicating threads.

Chapter 4

Enabling Cross-ISA SIMD Migration

This chapter is the first of three design chapters of this thesis. Chapter 4 clarifies the meaning

of several frequently used SIMD-related terms used in this thesis. In this chapter, a basic

approach to extending SIMD support for the Popcorn Linux Framework is also provided.

Chapter 4 begins in Section 4.1 with an introduction of several SIMD-related terms that will

be used throughout this thesis. Section 4.2 talks about the decision making behind inserting

migration points inside each SIMD region� and Section 4.3 explains how each SIMD region

migration correctness is ensured.

4.1 Definitions

In this section, the meaning of SIMD region, SIMD workload, and SIMD-intensive are

defined.

We define a SIMD region as a piece of code within a program that includes the usage of SIMD

instructions, such as a vectorized matrix computation. Figure 4.1 is an example of a SIMD

region under the LLVM intermediate representation (IR) level. A SIMD region’s size can

vary in execution time, and a program can contain any number of SIMD regions. If multiple

SIMD regions are nested together, these regions are considered as a single SIMD region.

SIMD instructions show high processor-preference toward cores with ISAs that provide wider

SIMD register width support (See Section 3.4 for detail). To demonstrate the performance

33

34 Chapter 4. Enabling Cross-ISA SIMD Migration

benefit of leveraging processor-preference in heterogeneous-ISA systems, this thesis develops

a framework that has cross-ISA migration within SIMD regions.

A SIMD workload is defined as a set of applications in which every application has at least

one SIMD region. In contrast, a non-SIMD workload is a set of applications that have no

SIMD regions. Because SIMD regions experience higher processor-preference toward ISAs

with wider SIMD register width support, this thesis uses SIMD workloads to investigate the

impact of high processor-preference applications on the execution of co-executing workloads.

We define a program to be SIMD-intensive if 50% of program execution time is in SIMD re-

gions. Investigating migrations in SIMD-intensive programs allows us to optimize our SIMD

extension support for the Popcorn Linux Framework. Our Profile Guided Optimization-

based (PGO) approach (see Chapter 5 for detail) supports SIMD region migrations in the

Popcorn Linux Framework. Applications instrumented using the PGO approach respond to

migration commands efficiently and incur low runtime overheads.

4.2 Selecting Migration Points

The main obstacle for enabling SIMD region migration was identifying a suitable location in-

side each SIMD region for migration. The LLVM’s intermediate representation (IR) provides

a means to overcome this. The intermediate representation is one of the LLVM’s unique fea-

tures. LLVM IR is both easy to read and platform-independent. Upon inspection of multiple

SIMD IRs generated by the LLVM compiler [67], we observed that SIMD computation at

the LLVM IR level followed a very predictable code flow, as shown in Figure 4.1.

4.2. Selecting Migration Points 35

Figure 4.1: LLVM Basic Block Layout for SIMD instructions.

The majority of SIMD computations occurred within a single basic block. In cases where a

SIMD region spans multiple basic blocks, at least one of those basic blocks contained this

code flow. In Popcorn Linux [12], equivalence points [117] are identified as “migration points”

– i.e., program points where execution can be migrated across ISAs. Function boundaries are

one of the naturally occurring equivalence points. During compilation, migration points are

automatically inserted at function entries and exits [12]. Our design aims to enable migration

within a SIMD region with minimum modifications to the underlying framework. Thus, this

approach is extended to our design. We created a new LLVM Pass that inserted during

the LLVM middle-end stage. This pass was designed to execute before the Popcorn Linux

modifications in LLVM took place. In this pass, we swept through the generated IRs and

identified all basic blocks containing SIMD instruction code flow, as shown in Figure 4.1. New

equivalence points were provided through adding new function boundaries inside a SIMD

region via “dummy” function call. This approach reduced the need to find non-function-

36 Chapter 4. Enabling Cross-ISA SIMD Migration

boundary equivalence points inside each SIMD region manually. We created a simple library

that provided the dummy function call and added the new library to the link-time libraries.

With the migration instrumentation method set, one crucial question remained unanswered:

where should the dummy function call be placed inside a SIMD region? In theory, the Pop-

corn Linux Framework supports the arbitrary placement of this dummy function call. As

long as the framework encountered a function boundary (newly inserted dummy function)

inside a SIMD region, a migration point can be instrumented. Unfortunately, after attempt-

ing to place one function call after each instruction inside a SIMD region, we found that

arbitrarily selecting a dummy function placement location is not feasible as we encountered

multiple compilation errors.

Further investigations into the Popcorn Linux framework’s source code revealed why the

SIMD migration was not initially supported in the original Popcorn Linux Framework. To

ensure a correct migration, Popcorn Linux Framework collects live values at each migration

call site using the LLVM stackmap feature. Live values are programmer-defined variables, or

LLVM generated intermediates at statically-known locations within a code. In essence, live

values are just values that runtime requires to be live at a migration point. Popcorn Linux

Framework stores these live values before migration allows a program to resume execution

when migrated to another ISA successfully. Then the framework generated a single set of

optimized LLVM bit code and lowered it through target-specific back ends. Because SIMD

extensions are architecture-specific features with different SIMD register width supports,

it is difficult to find a single legal live value argument across different ISAs and store it

in a single stackmap (512 bits live value on x86 requires 4 128 bits live values on ARM).

Attempts were made to try to split large SIMD operands for x86 ISAs in each stackmap into

ARM-compatible ones. However, our attempts were unsuccessful as we ran into multiple

compilation or assertion errors. After consulting with the LLVM community, we found that

4.2. Selecting Migration Points 37

Figure 4.2: Baseline Approach for Supporting Cross-ISA SIMD Migration.

the current LLVM compiler has no support in performing vector splitting for stackmap

operands, and community experts strongly suggest us to avoid solving this vector operands

splitting during legalization stage while lowering IR. Stackmaps in LLVM are designed to

describe the locations of elements such that they can be easily found at run time. Stackmaps

are therefore designed to expect values stored in stackmap to be always legal arguments.

Therefore, we directed our attention to find the right instrumentation point that avoids the

presence of SIMD live values.

38 Chapter 4. Enabling Cross-ISA SIMD Migration

After inspecting the basic block code flow several times, the design decision was to place

the dummy function after the vector index is calculated. This approach both reduces the

number of live values need to be recorded by stackmap compared to other suitable insertion

location (“Input Address Calculation” and “Calculate Next Index”), as well as prevents the

hassle of dealing with legalizing SIMD live values across different ISAs explained in the prior

paragraph. Because our design considers nested SIMD regions as a single SIMD region, we

did not encounter any SIMD live values outside SIMD basic block that would require further

modifications. Inserting after the vector index eliminates SIMD live value presence inside

the region as SIMD registers are not extracted until “Cast to Vector Type” is performed.

Figure 4.2 illustrates this approach. For reference purposes, this approach is called the

“Baseline Approach”.

4.3 Vector Unrolling

After inserting migration points, we must ensure that the program executes correctly after

(potential) migration. Because each ISA implements SIMD operations with varying widths,

the number of loop iterations needed for each SIMD region varies. Our extension for the Pop-

corn Linux Framework needs to account for combining different numbers of loop iterations

for x86 ISA and ARM ISA due to their different SIMD register width support.

Consider the example in Figure 4.3, in which one SIMD region is vectorized for ISA A and

one for ISA B, whose SIMD register width vary by a factor of two. Suppose there are

1000 elements needed to be computed; thus, ISA A will take half as many iterations (250)

as ISA B (500) to complete the task. Corner cases can violate program correctness if the

Popcorn Linux Framework tries to migrate from ISA B to ISA A at the start of the last

iteration (iteration 499) on ISA B and exit on ISA A. In this case, the result will perform

4.3. Vector Unrolling 39

Figure 4.3: Vector Unroll Example.

two unnecessary calculations at the end (ISA A will attempt to perform a calculation on two

additional elements of 1001 and 1002 or unknown program behaviors if element 1001 and

1002 does not exist).

One way to prevent this error is by unrolling the loop as many times as the least common

multiple (LCM) of both ISAs’ SIMD register width so that the same number of calculations

are done in a single loop iteration. In LLVM, the loop vectorizer uses a cost model to

decide on the unroll factor, and users can force the vectorizer to use specific values [76]. The

LCM approach is compatible with any compiler optimization. The LCM is generated based

on the final number of elements that are being processed in each iteration after compiler

optimization (a SIMD register width of 2 unrolled three times is equivalent to a SIMD

register width of 6). Hence, for Figure 4.3’s example, the problem is solved by unrolling

twice on ISA B. Therefore, each time ISA B performs operations on four elements, it is

identical to the number of elements performed in a single loop iteration for ISA A.

40 Chapter 4. Enabling Cross-ISA SIMD Migration

As it turns out, this technique also helps to reduce the runtime overhead (discussed in detail

in Chapter 5) by increasing the migration check interval.

In order to ensure programs were migrated correctly if migrations were initiated in the SIMD

region, a series of micro-benchmarks were used. We designed several micro-benchmarks con-

tained mainly of matrix computations (vector add, vector multiply, vector add and multiply

, etc.). At the end of each test, we checked if each migrated program had the same result as

the non-migrated version. We used the same random seed to ensure the element of the matrix

was the same across each run , and we tested multiple times. For all our runs, our migrated

micro-benchmarks return the same value as the non-migrated ones. Thus, the correctness of

migration within a SIMD region is guaranteed in our baseline approach design.

Chapter 5

Optimizing Cross-ISA SIMD

Migration

This chapter is the second of three design chapters for this thesis. In this chapter, we identify

the weakness of the baseline approach discussed in Chapter 4. We refine our design with

a new profile guided optimization (PGO) based approach similar to LLVM’s built-in PGO.

Using this new approach, we can lower runtime overhead while ensuring applications are still

responsive to migration commands.

Chapter 5 begins with Section 5.1 identifying the weakness of the previous baseline approach,

and ends with Section 5.2 describing the new profiled guided optimization-based approach.

5.1 Baseline Approach Overhead

SIMD operations are meant to speed up computation, and in most cases, each SIMD loop

iteration executes relatively quickly. However, if the compiler blindly inserts migration

points at the beginning of each SIMD loop iteration (after “Calculate Vector Index”) as

discussed in Chapter 4, the program will suffer significant runtime overhead. Figure 5.1

illustrates the cause of this extra runtime overhead. This overhead is mainly due to the

41

42 Chapter 5. Optimizing Cross-ISA SIMD Migration

Figure 5.1: Baseline Approach Overhead.

additional system calls to check for a migration decision (i.e., whether or not to migrate).

For SIMD-intensive programs with a large number of loop iterations that never actually mi-

grate, naïvely executing system calls to check at every loop iteration can harm performance.

Nonetheless, applications should be able to respond to migration requests to efficiently lever-

age heterogeneous-ISA systems quickly.

5.2. Profiled Guided Optimization Approach 43

Figure 5.2: PGO Approach for Supporting Cross-ISA SIMD Migration.

5.2 Profiled Guided Optimization Approach

In order for programs to quickly respond to migration requests as well as incur low run-

time overhead when migrated, we propose a two-stage profile-guided optimization(PGO)

approach, similar to LLVM’s built-in PGO [16, 75, 77], to guide the insertion of optimized

migration points. We built this approach on top of the existing baseline approach. Figure 5.2

shows an overview of our new approach. The newly proposed PGO approach has two stages:

a profiling stage and an optimizing stage.

5.2.1 Profiling Stage

In the profiling stage, we want to compile a program with instrumentation. The instrumented

program executes and prints out timestamps at the entry/exit of each SIMD region. These

timestamps later will be used to calculate each SIMD region’s execution time. Inserting

timestamp function calls can be done using a similar approach as inserting migration points

discussed in Chapter 4. However, timestamp information itself does not provide enough

44 Chapter 5. Optimizing Cross-ISA SIMD Migration

Figure 5.3: Reverse Post-order Traversal Example [14].

information for a program to make intelligent optimization decisions. To supply the compiler

with more information, we also need to print out more information so that each timestamp

can map to a specific SIMD region as well as can identify whether a particular timestamp

corresponds to entry or exit point of a SIMD region.

Many techniques have been used by the compiler to uniquely identify a basic block, such as

name mangling for a unique name [28], numbering, etc. Among the numbering techniques,

we choose the reverse post-order (RPO) over the control flow graph (CFG) to assign a unique

number to each basic block, even though there are other methods we can use, such as pre-

5.2. Profiled Guided Optimization Approach 45

order traversal and in-order traversal. The benefit of using reverse post-order is to leverage

the existing infrastructure in the LLVM [67] because the LLVM itself highly relies on the

reverse post-order to run transformations and analysis [28]. Figure 5.3 shows that reverse

post-order traversal is just the reverse of post-order traversal. RPO guarantees that a basic

block appears before any of its successors and reaches each basic block in the same order if

the program is compiled with the same optimization flags. This guarantee allows us to use

profiled data to optimize designated basic blocks.

In our final modified instrumentation for the profiling stage, we created an LLVM IR pass

that contains a counter that increases every time we reach a new basic block. If we encoun-

tered the entry/exit point of a SIMD region, we would insert a timestamp function call that

contains two additional pieces of information: Basic Block RPO ID (counter) and a flag

to indicate whether it is an entry or exit of a SIMD region. This inserted function call is

linked to an external library that prints out timestamp as well as two additional pieces of

information to the profiled data file.

In the end, the instrumented program is executed with outputs logged into a text file, which

ends the profiling stage.

46 Chapter 5. Optimizing Cross-ISA SIMD Migration

Figure 5.4: PGO Optimizing Stage.

5.2.2 Optimizing Stage

The optimizing stage, shown in Figure 5.4, contains three steps. After a profiled data file is

generated, we first need to use the generated data to determine how often migration should

be checked inside each SIMD region. The granularity at which each application checks for

migration decisions can be modified through executing migration checks only after certain

iteration intervals. System designers using this framework can choose an arbitrary value

as granularity with an upper bound of checking at every interval (Baseline Approach) or

not checking at all (vanilla). System designers must know that migration responsiveness

and runtime overhead are directly correlated in our framework; increasing responsiveness

will result in more runtime overheads. In our design, we assume that the granularity is set

at checking for migration at a one-second interval in a heterogeneous-ISA system. Based

on our preliminary testing and our workload evaluation results (shown in Chapter 7), this

granularity is both responsive and incurs low runtime overheads.

With migration check granularity set and the fact that granularity can be adjusted by check-

ing for migration-only after certain SIMD iteration intervals, the PGO approach needs to

determine how many SIMD iterations migration checks be skipped to match this desired

granularity. The number of SIMD iterations can be challenging to estimate and automate

due to different compiling options and system configurations. To produce an accurate esti-

mation for an application, we created a microbenchmark that contains the mainly same type

5.2. Profiled Guided Optimization Approach 47

of SIMD instructions and the same configuration as the compiling application and adjusts

the loop iteration in the source code until the microbenchmark has an execution time of

1 min. We then calculated the number of SIMD iterations the microbenchmark calculated

to approximate the number of iterations the compiling server can execute in 1 sec through

fundamental mathematics division. Currently, this estimation process has to be done once

per application. For our experimental evaluations, we individually profiled each benchmark

containing SIMD regions. However, it is possible to use a single metric to estimate target

iterations based on the unrolling factor and SIMD extension given at the command line. For

example, if a program with AVX-512 extension that unrolled once can perform four SIMD

loop iterations in a second, then it is likely another program with the same SIMD extension

can only perform two SIMD loop iterations when unrolled twice.

Figure 5.5: Optimization Program Decision Tree.

The second step involves merging smaller SIMD regions. Smaller SIMD regions hurt the

effectiveness of the heterogeneous-ISA systems. A program with smaller SIMD regions likely

exhibit less processor-preference than larger SIMD regions and incorrectly categorize them

as SIMD-intensive program can hinder system performance by not utilizing resources effi-

ciently. PGO approach eliminates smaller SIMD regions in two smaller steps. We created

48 Chapter 5. Optimizing Cross-ISA SIMD Migration

an independent analysis program that parses through the profiled data and determines the

execution time of each region. This independent analysis program also requires the user

to provide the desired responsiveness they have determined in a unit of seconds. Based on

responsiveness input, the program will output a file with a flag corresponding to each SIMD

region. This flag determines whether this SIMD region is considered big enough. A flag that

is not set means the compiler will not instrument that SIMD region with the Popcorn Linux

Framework instrumentation required for migration, essentially eliminating smaller SIMD re-

gions. The output file will produce a result per line containing the RPO ID, as well as the

flag. Figure 5.5 illustrates the parsing program’s decision tree.

Up to this point, this framework has gathered information on migration interval checks

as well as identified smaller SIMD regions. In the last step, a migration point has to be

instrumented in selected SIMD regions based on this new information. We first need to load

this information into the LLVM infrastructure so that they can be used later by LLVM IRs.

We propose to have the loaded file available to all functions and stores in a single compilation

unit (aka, Module in LLVM). This external profile information is loaded in the initialization

stage of the LLVM execution stance rather than loading it every time for each function,

which can significantly reduce the run time for parsing external profile. We provide an

instance of the class, named ProfileDataManager, to be initialized with the passed in profile

when an LLVM execution environment is going to be created. The class ProfileDataManager

contains an internal data structure for the query from instrument pass to check whether a

basic block should be considered as an instrument candidate. The internal data structure of

class ProfileDataManager is organized as a Boolean array. Implementation of the Boolean

array allows LLVM to quickly determine if the basic block should be treated by indexing the

specified array slot with the basic block number.

In the middle-end, we modified on top of the existing instrumentation pass used in the

5.2. Profiled Guided Optimization Approach 49

Figure 5.6: SIMD Basic Block Split for PGO Approach.

Baseline Approach (Chapter 4). Like the profiling stage code, we also have a counter that

increases when it reaches a new basic block. Now for every SIMD basic block, we encountered

while traversing in reversed post-order, we check if the global data for that particular ID, if

that basic block ID has flag not set in the corresponding slot in the Boolean array, we move

onto scanning the next basic block. If the basic block has a flag set, we split the original

SIMD basic block into three smaller basic blocks shown in Figure 5.6, one extracts vector

indexes, one checks for migration, and one contains the remainder of the original SIMD

basic block. After each split, we skip the next two newly created basic blocks as they are

not present in the profiling stage. Figure 5.7 illustrates the final instrumentation of a large

SIMD region at the IR level.

Our evaluation revealed that by using the PGO approach, the final instrumented SIMD

50 Chapter 5. Optimizing Cross-ISA SIMD Migration

Figure 5.7: PGO Approach for Supporting Cross-ISA SIMD Migration.

application with a one-second migration checking interval would only suffer a 5% execution

time overhead on average.

Chapter 6

Leverage Processor-preference for

Performance Gain

This chapter is the last of three design chapters for this thesis. Because processor choices

in heterogeneous-ISA systems are diverse, applications are more likely to experience differ-

ent degrees of processor-preference. In this chapter, we leverage applications of different

processor-preferences for increased system performance in migration-capable heterogeneous-

ISA systems with SIMD extension support. This chapter also explains how our processor-

preference-aware scheduler is built and illustrates the scheduler decision-making process.

Chapter 6 begins in Section 6.1, with an explanation of the core idea of our scheduling

policy. This chapter ends in Section 6.2 with an illustration of the processor-preference-

aware scheduler setup and its decision-making process.

6.1 Scheduling Policy

Compiler-level infrastructural supports for cross-ISA execution migration within SIMD re-

gions allow us to explore further the possibilities of leveraging processor-preference for a

greater range of applications [114] to increase system throughput. The system, however,

requires a processor-preference-aware scheduler – i.e., one that can decide when to migrate

an application from one processor to another based on the application’s processor-preference

51

52 Chapter 6. Leverage Processor-preference for Performance Gain

to increase the overall system throughput.

We propose a scheduling policy to achieve this goal. Our policy assumes that the final system

slowdown (taking into consideration all factors, such as clock speed and micro-architectural

differences) for each application on each different processor-based platform is known through

the profiling stage in our two-step PGO approach. Our policy is centered around one central

idea:

the speedup gained from executing an application on the optimal core should outweigh the

slowdown other applications suffer from not running on that core. In other words,

speedup_of_app_X

slowdown_of_app_Y
> 1

For example, consider two applications A and B, where A runs 10X slower on an ARM-

based core than on an x86-based core, and B runs 5X slower on an ARM-based core than

on an x86-based core. Since the speedup gained from running A on the optimal x86-based

core (10X) is greater than the slowdown B experiences from running on the non-optimal

ARM-based core (5X), it is likely effective to schedule A on the x86-based core and B on

the ARM-based core (assuming there is only one ARM-based core and one x86-based core

available) to improve the system throughput.

Figure 6.1: Comparing Application by Application is Inefficient.

6.1. Scheduling Policy 53

Our scheduling policy should also be fast in decision making. Any scheduling decision that

takes too long to decide can force systems to utilize their resources inefficiently. Figure 6.1

shows that comparing every application-based design on its slowdown is accurate; however,

a general linked list style comparison has a time complexity O(Number of Unique Applica-

tions). This application-tracking method can be troublesome for a system running diverse

workloads for a very long time.

The scheduler categorizes applications into smaller groups using some logically defined met-

rics to reduce the complexity of comparing every application based on their processor-

preferences. In this thesis, we categorize all applications into three smaller groups based

on their processor-preference and the hardware thread count (ht) difference between the two

ISA-different servers, as follows:

App =

Group_High_Processor_Preference, if Slowdown ≥ ∆2ht

Group_Medium_Processor_Preference, if ∆ht < Slowdown < ∆2ht

Group_Low_Processor_Preference, if Slowdown ≤ ∆ht

In the above equation, ∆ht represents the hardware thread count differences between the

two ISA-different servers.

Our ideology behind using hardware thread count difference as a classification metric is that

application processor-preference’s impact on system throughput can be directly compensated

by executing more programs in parallel in a perfect system-resource-abundant world. Thus,

these two factors are closely related. However, system designers can freely choose any other

classification metric to form any amount of smaller groups as long as they can group appli-

cations with the relatively same degree of processor-preference applications together. Wrong

group classification can harm system performance. By classifying all applications into three

54 Chapter 6. Leverage Processor-preference for Performance Gain

Figure 6.2: Scheduler Information Storing Example in a Multi-processor (>=3 Processors)
Scenario.

groups, the system has to compare new incoming applications three times, which have a time

complexity of O(3) ≈ O(1).

This scheduling model is further scalable for future multi-processor systems (i.e., more than

two processors). System designers in those cases need to identify a “baseline” platform to

compare. Applications performance on different processors will be compared to the base

platform and will be stored individually in the scheduler, as shown in Figure 6.2.

In our two ISA setup, applications belong to the low processor-preference group

(Group_Low_Processor_Preference) have small performance differences to either processor

and are most likely to benefit from the extra cores. Medium processor-preference group

members (Group_Medium_Processor_Preference) have a higher preference for the faster

processor. However, the slowdown by running on non-optimal cores is likely to equal to

or close to the hardware thread count differences between the two servers. Therefore, they

are likely to experience a smaller degree of throughput degradation. Lastly, high processor-

preference applications (Group_High_Processor_Preference) have an extremely high pref-

erence for the faster processor, and thus, the speedup gain of running on the optimal cores

easily outweighs the maximum hardware thread count differences.

6.2. Scheduler Setup 55

In short, our scheduling policy prioritizes executing high processor-preference group members

on the servers with a faster processor as often as possible, followed by medium processor-

preference group members, and finally, the low processor-preference group members.

6.2 Scheduler Setup

Our scheduler is implemented using an event-driven client-server model using internet sock-

ets. Each application communicates with the scheduler using function calls upon three

events: (1) arrival into the system queue, (2) upon application completion, and (3) after

a migration is completed. For the first and second event, function insertions were done at

LLVM middle-end using the LLVM pass feature. For the third event, modifications were

made in the Popcorn Linux migration library.

Figure 6.3 illustrates the decision tree of our scheduler. The scheduler is idle by default and

continues waiting for the arrival of one of three possible events (a program just started, a

program just migrated, and a program just finished). Then the scheduler extracts the server

usage for both servers it internally tracks. Based on the server usage information, the sched-

uler uses the scheduling policy discussed in Section 6.1 to make a scheduling decision on the

incoming event. For events that are not worth migrating (program already running on an

optimal core, no optimal cores are available, or program exits), the scheduler updates its

server usage info and continue waiting for the next event. For every migration-worthy event,

the scheduler can issue up to two migration commands. If the migration destination server

is underutilized, the scheduler issues one migration command to the incoming program. If

the migration destination server is fully utilized, one additional migration commands will be

issued to migrate away from one of the running programs. Programs that are selected to

vacate cores for the incoming events are always selected based on their arrival time. Thus,

56 Chapter 6. Leverage Processor-preference for Performance Gain

Figure 6.3: Scheduler Decision Making Process.

programs that started recently will be selected first among applications belonging to the

same classification group.

The scheduler runs on one of the server cores (Cavium ThunderX in our experimental setup)

and always tries to schedule applications without overloading any servers.

Chapter 7

Experimental Setup & Experiment

Results

This chapter presents how we evaluated our purposed design. Chapter 7 contains relevant in-

formation on system setups, compilation procedures, and testing script descriptions. Impacts

of processor-preference on system performance (our design in particular) are first examined

in a controlled environment. The effectiveness of our design is further tested in more real

diverse workloads at the end of this chapter.

This chapter starts with information on the experimental setup in Section 7.1, followed by

Section 7.2 on explaining experiment results. More specifically, Subsection 7.2.1 examines

two-application workload scenario results, and Subsection 7.2.2 examines a more real multi-

application workload scenario results .

7.1 Experimental Setup

Table 7.1 describes the key characteristics of the heterogeneous-ISA servers that we used in

our experiments. We considered four server configurations for comparison: (1) a homoge-

neous system composed of two Xeon servers, called “x86-static”; (2) a homogeneous system

composed of two Cavium ThunderX servers, called “ARM-static”; (3) a heterogeneous sys-

tem composed of one Cavium ThunderX server and one Intel Xeon Gold 5118 server, called

57

58 Chapter 7. Experimental Setup & Experiment Results

Table 7.1: Server Configurations.

Name Intel Xeon Cavium ThunderX
Generation Gold 5118 1

ISA x86-64 ARMv8
Micro-architecture OoO IO
Number of Cores 12 96

Number of Threads 24 96
RAM Size 48 GB 128 GB

SIMD Register Width 512 bit 128 bit

“het-static”, wherein applications are statically pinned to the next available core with the

highest processor-preference and run to completion on that core (i.e., no migration); and (4)

a heterogeneous system composed of one Cavium ThunderX server and one Intel Xeon Gold

5118 server with cross-ISA SIMD migration enabled using the aforementioned techniques,

called “het-dynamic”. We hope to show the potential of systems with heterogeneous-ISA

multiprocessors through emulating such systems using servers with different ISA-based pro-

cessors combined with the Popcorn Linux Framework. As shown in Table 7.2, all four setups

have identical processor costs; thus, performance is the only evaluation metric to show if the

design is profitable. x86-static, ARM-static, and het-static serve as a baseline to evaluate

Server configuration Cost
x86-static $2546
arm-static $2432
het-static | het-dynamic $2489

Table 7.2: System Configuration Cost.

the effectiveness of het-dynamic setup and do not migrate applications between servers. For

het-dynamic, the two servers are interconnected via RDMA over Infiniband (56Gbps). We

used factory-specified settings for all setups because we are trying to evaluate the maximum

performance of each machine despite their micro/macro-architectural differences and are not

interested in trying to isolate individual differences.

7.1. Experimental Setup 59

We used the same benchmarks as in Figure 1.4, compiled in two different ways for our

experimental studies. For the het-dynamic setup, the benchmarks are compiled with the

migration instrumentation described in Chapter 5. For the three baseline configurations,

the benchmarks are compiled without any instrumentation to avoid unnecessary overhead

and to ensure a fair comparison (applications do not migrate in these cases). Currently,

our PGO approach is done manually. We profiled the SIMD benchmarks and instrumented

the SIMD regions to check for migration once every second. Because each benchmark was

profiled beforehand, the relative slowdown of all applications is known upfront when setting

up classification groups for schedulers.

Our evaluation workload script is similar to the testing script used in Section 1.2. The eval-

uation workloads were generated by a script that starts a workload batch with a predefined

benchmark composition. To ensure fairness, in the first iteration, the workload script as-

signed benchmarks based on the application’s processor-preference for three baseline setups.

When all cores are fully occupied, the script randomly assigned benchmarks remaining in

the workload batch to the next available free core to best mimic a dynamic workload sce-

nario. In a dynamic workload scenario, the incoming benchmarks can not be predicted, but

the overall ratio can be estimated. If a workload batch is finished, the script regenerates

an identical batch from which to select. This process continues until the evaluation period

ends. To ensure a fair comparison, we used the same random seed so that each configuration

has the same benchmark selection outcome for every run. Each experiment was run for 75

minutes. The rationale behind this is that most of the benchmarks execute in about 3 to 5

minutes when running on the x86-based processor; 75 minutes is large enough to mitigate

the impact of noise.

60 Chapter 7. Experimental Setup & Experiment Results

7.2 Experiment Results

We evaluate our proposed framework to understand the effectiveness of our purposed design

(het-dynamic) on improving system throughput on a diverse range of workloads. To this

end, we conducted two sets of experiments. The first set considered workloads composed

of two applications: one high processor-preference (SIMD) benchmark and one non-high

processor-preference benchmark. The goal of this two-application workload experiment is

to determine what workload compositions yield throughput gains for our het-dynamic de-

sign. By focusing on only two benchmarks, we can more easily narrow down the impact of

individual benchmarks with different processor-preferences.

Using the insights gained from these experiments, our second set of experiments considered a

more realistic workload consisting of multiple benchmarks with various degrees of processor-

preference. To exhaustively test our extended SIMD migration support for the Popcorn Linux

Framework, we only designated benchmarks with large SIMD regions as high processor-

preference benchmarks. For easier result comparison, we used the Hydro benchmark from the

Livermoore Loops suite [83] as the designated SIMD benchmark for both sets of experiments.

7.2.1 Two-application Workloads

Figures 7.1 and 7.2 show the system throughput of a two-application workload under two dif-

ferent high processor-preference (SIMD)/non-SIMD ratios: 12.5/87.5% and 25/75% respec-

tively. The x-axis represents the benchmarks tested as the non-SIMD benchmark, arranged

in increasing slowdown order according to Figure 1.4, with the leftmost being EP from the

NPB suite [11], which has the lowest slowdown, and the rightmost being CG from NPB,

which has the highest slowdown. The y-axis is the total number of benchmarks completed

in a testing period of 75 minutes, where higher is better. The upper pink portion of each

7.2. Experiment Results 61

4
0

200

400

600

800

1000

1200

1400

1600

1800

2000
he

t-d
yn

am
ic

he
t-s

ta
tic

x8
6-

st
at

ic

ar
m

-s
ta

tic

he
t-d

yn
am

ic

he
t-s

ta
tic

x8
6-

st
at

ic

ar
m

-s
ta

tic

he
t-d

yn
am

ic

he
t-s

ta
tic

x8
6-

st
at

ic

ar
m

-s
ta

tic

he
t-d

yn
am

ic

he
t-s

ta
tic

x8
6-

st
at

ic

ar
m

-s
ta

tic

he
t-d

yn
am

ic

he
t-s

ta
tic

x8
6-

st
at

ic

ar
m

-s
ta

tic

he
t-d

yn
am

ic

he
t-s

ta
tic

x8
6-

st
at

ic

ar
m

-s
ta

tic

he
t-d

yn
am

ic

he
t-s

ta
tic

x8
6-

st
at

ic

ar
m

-s
ta

tic

NPB-EP PHX-K-means NPB-FT NPB-UA NPB-BT NPB-LU NPB-CG

Sy
st

em
 T

hr
ou

gh
pu

t

Normal SIMD

Figure 7.1: Throughput of two application workloads with 1/8 SIMD/non-SIMD ratio.

bar represents the number of SIMD benchmarks completed. and the bottom blue portion

represents the non-SIMD benchmarks completed in a testing period.

These figures reveal that het-dynamic consistently outperforms het-static. For the 12.5%

SIMD scenario, het-dynamic outperforms all baselines in three cases: EP, K-means, and

FT. EP has the best performance gain of ∼36% over the next best baseline. However, the

performance gain shrinks to ∼14% for K-means and ∼11% for FT. For other benchmarks

with increasing processor-preference toward x86-based cores, x86-static consistently outper-

forms het-dynamic and also het-static and ARM-static. An average of 6.3% of non-SIMD

benchmarks migrated to ARM in order to vacate x86-based cores for SIMD benchmarks,

and no SIMD benchmark is spilled onto ARM.

Similar trends occur in the 25% SIMD scenario – het-dynamic still has better performance

for EP, K-means, and FT. However, the performance gain drops down to ∼19%, ∼8%,

and ∼3%, respectively. This performance decrease can be attributed to an average of 5.1%

SIMD benchmarks spilled onto ARM. However, every spilled SIMD benchmark eventually

migrates back to x86-based cores, which mitigated some throughput reduction. The average

62 Chapter 7. Experimental Setup & Experiment Results

h

40

200

400

600

800

1000

1200

1400

1600

1800
he

t-d
yn

am
ic

he
t-s

ta
tic

x8
6-

st
at

ic

ar
m

-s
ta

tic

he
t-d

yn
am

ic

he
t-s

ta
tic

x8
6-

st
at

ic

ar
m

-s
ta

tic

he
t-d

yn
am

ic

he
t-s

ta
tic

x8
6-

st
at

ic

ar
m

-s
ta

tic

he
t-d

yn
am

ic

he
t-s

ta
tic

x8
6-

st
at

ic

ar
m

-s
ta

tic

he
t-d

yn
am

ic

he
t-s

ta
tic

x8
6-

st
at

ic

ar
m

-s
ta

tic

he
t-d

yn
am

ic

he
t-s

ta
tic

x8
6-

st
at

ic

ar
m

-s
ta

tic

he
t-d

yn
am

ic

he
t-s

ta
tic

x8
6-

st
at

ic

ar
m

-s
ta

tic

NPB-EP PHX-K-means NPB-FT NPB-UA NPB-BT NPB-LU NPB-CG

Sy
st

em
 T

hr
ou

gh
pu

t

SIMD Normal

Figure 7.2: Throughput of two application workloads with 1/4 SIMD/non-SIMD ratio.

percentage of non-SIMD benchmarks migrated to vacate x86-based cores for SIMD bench-

marks is around 12.8%. This almost doubled percentage is likely due to the 2x increase

in the SIMD ratio. We also tested larger SIMD benchmark ratios of 50% (i.e., 50% SIMD

benchmark ratio) and 100% (i.e., all SIMD benchmarks). In both cases, het-dynamic shows

no performance gain over x86-static.

From these results, we can draw several conclusions. First, het-dynamic performs well with

workloads consist of a low ratio of high processor-preference (SIMD) applications. For work-

loads with larger SIMD benchmark ratios, het-dynamic lacks enough application-preferred

x86-based cores to execute these high processor-preference benchmarks; thus, spilling SIMD

benchmarks onto ARM hurts throughput. The spilled SIMD benchmarks are forced to

execute on a significantly slower (lower processor-preference) architecture until one of the

existing SIMD benchmarks on an x86-based core finishes. These spilled benchmarks degrade

throughput. Reduction in application diversity will reduce the need for processor-diversity

in systems.

Second, het-dynamic yields better throughput for low processor-preference applications. In

7.2. Experiment Results 63

both Figures 7.1 and 7.2, all three benchmarks either belong to or close enough to the

low processor-preference group. Low processor-preference applications allow het-dynamic

to compensate for the smaller performance slowdown with the higher number of Cavium

ThunderX cores. These additional cores allow the system to execute more applications in

parallel, thereby outperforming x86-static. Despite a low SIMD ratio, het-dynamic is also

better than ARM-static because there are still a few SIMD benchmarks in the mix. In the

ARM-static case, the SIMD benchmarks become stragglers due to extreme slowdowns, which

ultimately harms throughput.

Lastly, the impact of het-dynamic’s scheduler on system throughput cannot be ignored. The

scheduler allows het-dynamic to better allocate resources based on the incoming application’s

processor-preference. The impact of the scheduler can also be reflected by the fact that the

EP-Hydro (SIMD) workload combination has the best performance gain in both 1/4 and

1/8 scenarios. The EP-Hydro workload combination contains two benchmarks that have the

most diverse processor-preferences. Thus, migrating processes across ISAs to match their

processor-preferences enables het-dynamic to obtain the most significant system throughput

gain (36%) over the next best baseline.

64 Chapter 7. Experimental Setup & Experiment Results

7.2.2 Multi-application Workloads

0
200
400
600
800

1000
1200
1400
1600

1/8 | 0 | 7/8 1/8 | 1/16 | 13/16 1/8 | 3/16 | 11/16 1/8 | 5/16 | 9/16 1/8 | 7/16 | 7/16 1/8 | 1/2 | 3/8

Sy
st

em
 T

hr
ou

gh
pu

t

High/Medium/Low Slowdown Benchmark Percentage

het-dynamic x86-static ARM-static

Figure 7.3: Throughput of multi-application workloads with 1/8 high processor-preference
(high slowdown) application ratio.

Figures 7.3 and 7.4 show the system throughput of workloads composed of more than two

benchmarks with the high processor-preference benchmarks (SIMD only) fixed at 12.5% and

25% of total workloads, respectively. For both scenarios, we fixed the ratio of the high

processor-preference group benchmarks. The high processor-preference group only contains

benchmarks with a large SIMD region to test the effectiveness of our SIMD migration capa-

bility. For each scenario, we varied the ratio of benchmarks belonging to low and medium

processor-preference groups. The x-axis represents each group’s ratio, and the y-axis shows

the system throughput.

In the 12.5% high processor-preference group (SIMD) ratio scenario, het-dynamic outper-

forms both x86-static and ARM-static in all tested cases with an average gain of 14.6% and

a maximum gain of ∼26% over the next best homogeneous baseline with workloads con-

sisting of 12.5%, 31.25%, and 56.25% of high, medium, and low processor-preference group

members respectively. However, similar to the two-application workload experiments, the

performance gain shrinks as the percentage of medium processor-preference benchmarks in-

creases. This decrease in performance is due to our scheduling policies reduce effectiveness

7.2. Experiment Results 65

0
200
400
600
800

1000
1200
1400
1600

1/4 | 0 | 3/4 1/4 | 1/16 | 11/16 1/4 | 3/16 | 9/16 1/4 | 5/16 | 7/16 1/4 | 7/16 | 5/16 1/4 | 1/2 | 1/4

Sy
st

em
 T

hr
ou

gh
pu

t

High/Medium/Low Slowdown Benchmark Percentage

het-dynamic x86-static ARM-static

Figure 7.4: Throughput of multi-application workloads with 1/4 high processor-preference
(high slowdown) application ratio.

when workloads consist of more benchmarks biased towards a single processor. An average

of 23.1% of total benchmarks is migrated to ARM during the experiment to vacate x86 cores

for benchmarks with higher preference. 24.7% of total benchmarks on average are eventu-

ally migrated back to an x86 core. This larger migrate back percentage indicates that our

scheduler can utilize the new framework to allow benchmarks to finish in chronological order

if there is no difference in processor-preferences.

Similar trends also occur in the 25% scenario – het-dynamic still has the best performance

in four out of six test cases, achieving a maximum performance gain of 31.1%. An average

of 28% of total benchmarks is migrated to ARM during the experiment to vacate cores for

benchmarks with higher processor-preference. An average of 24.4% is eventually migrated

back to the x86-based server. We tested larger high processor-preference group ratios (e.g.,

50%, 100%). In both cases, het-dynamic has no performance gain over x86-static in all

workload cases.

From multi-application workload experiments, we gain further understanding of our heterogeneous-

ISA systems design. Het-dynamic system configuration is best equipped to handle workloads

that contain large low processor-preference and medium processor-preference application ra-

tios. These additional evaluations further expand the “sweet spot” of het-dynamic because,

66 Chapter 7. Experimental Setup & Experiment Results

in the two-application scenario, we do not see any benchmark that has medium processor-

preference benefiting from het-dynamic.

The multi-application experiments thus reveal that in a more realistic workload with multiple

diverse applications, het-dynamic can achieve increased performance for applications with a

higher degree of processor-preferences. Het-dynamic can, therefore, achieve higher through-

put over a broader workload spectrum than comparable homogeneous setups. This addi-

tional performance improvement is achieved by better matching each application’s processor-

preference to an optimal processor with added migration and scheduling capabilities, improv-

ing the system throughput.

Chapter 8

Conclusion & Future Works

This chapter wraps up the entire thesis. We illustrate the conclusions we have drawn from

this research and discuss the potential importance of having processor-diversity considered

as an important dimension in future processor designs.

This chapter starts with Section 8.1 discussing the conclusions we have made. Future direc-

tions in this research area are provided in Section 8.2.

8.1 Conclusion

We championed the usability of heterogeneous-ISA systems compared to mainstream

homogeneous-ISA systems. We explored whether heterogeneous-ISA systems can be lever-

aged for performance gains. We proved that having processors with different ISAs pro-

vide a new interesting dimension in processor design. We extended the Popcorn Linux [12]

framework to support migration inside SIMD regions. Efficiently using each application’s

processor-preference and dynamically migrating them to use optimal cores in heterogeneous-

ISA systems can result in significant performance gains over traditional homogeneous-ISA

systems. In the end, we reinforced the support for developing a commodity heterogeneous-

ISA chip multi-processor with cache-coherent shared memory.

67

68 Chapter 8. Conclusion & Future Works

Our work’s main conclusion is that there is “no processor design that fits all.” The fact

that het-dynamic allows two servers with vastly different processors that are five years apart

in production to outperform two servers with the same 2018-released processors within the

same budget is a strong validation of our results.

8.2 Future works

We believe that our work only scratches the surface of the heterogeneous-ISA system space.

Many promising future directions still exist. For example, this thesis focused only on im-

proving system performance but scoped out on investigating energy costs. System energy

optimizations are not investigated in this thesis mainly due to the process node gap between

the two servers that we selected. The Cavium ThunderX server (initially released in 2014)

uses a more power consuming 28 nm process, whereas the Xeon server (released in 2018)

uses a more recent 14 nm process. Combined with the fact that the Cavium ThunderX

does not implement many energy-saving features such as low-power states, Dynamic Volt-

age Frequency Scaling, and clock gating, the Cavium ThunderX is not an energy-efficient

processor.

Recent ARM servers such as Marvell’s ThunderX2 [110] (Marvell recently required Cavium)

and Ampere’s eMAG server [25] use 14nm process and are likely more energy-efficient and

have higher performance than Cavium ThunderX. Thus, pairing together either one of the

two latest ARM servers with our existing x86-based servers are anticipated to have a perfor-

mance benefit over homogeneous-ISA systems in more scenarios and potentially enable us

to investigate system energy optimizations. However, due to the significant amount of engi-

neering efforts required in porting the Popcorn Linux infrastructure for cross-ISA migration

on these platforms, we can only extrapolate what will Xeon-ThunderX2, and Xeon-Ampere

8.2. Future works 69

het-dynamic setup performs using het-static configuration. Het-static setup for both configu-

rations can be easily measured as the setup does not involve cross-ISA migration. Figure 8.1

shows the het-static setup performance number for the two new setups. For comparison

purposes, we also put in the het-dynamic and x86-static performance numbers from Xeon-

ThunderX setup earlier.

0

500

1000

1500

2000

2500

3000

EP KMEAN 2/3 FT_A UA_A BT_A LU_A CG_B

Sy
ste

m
 T

hr
ou

gh
pu

t

Xeon-Xeon Xeon-ThunderX

Xeon-ThunderX2 Xeon-Ampere

Figure 8.1: Throughput of het-static and x86-static on Marvell ThunderX2 [110] and Ampere
eMAG [25] servers.

As shown in Figure 8.1, het-static on Xeon-Ampere shows the best performance with average

throughput gain of 100% over het-dynamic on Xeon-ThunderX and 76% over x86-static on

Xeon-Xeon. From our evaluation results, het-dynamic outperforms het-static on similar

heterogeneous-ISA servers in almost every scenario. Thus, extrapolating from Figure 8.1,

het-dynamic will likely outperform het-static and x86-static on these newer servers as well.

Thus future ARM-based processors combined with the latest x86-based processors offer even

more intriguing processor design choices. Another promising direction is scheduling. Recent

results such as [87] reveal that machine learning-based approaches can accurately predict

program performance for superior scheduling policies. This approach can be leveraged in

the heterogeneous-ISA SIMD scheduling space, as well.

Bibliography

[1] Xeon gold 5118 - intel. URL https://en.wikichip.org/wiki/intel/xeon_gold/

5118.

[2] A landscape of the new dark silicon design regime. IEEE Micro, Micro, IEEE, (5):8,

2013. ISSN 0272-1732. URL http://login.ezproxy.lib.vt.edu/login?url=http:

//search.ebscohost.com/login.aspx?direct=true&db=edseee&AN=edseee.

6583151&site=eds-live&scope=site.

[3] Ayaz Akram. A study on the impact of instruction set architectures on processor’s

performance, 2017. Master Thesis, Western Michigan University.

[4] Ayaz Akram and Lina Sawalha. The impact of isas on performance. In Workshop on

Duplicating, Deconstructing and Debunking (WDDD) co-located with 44th International

Symposium on Computer Architecture (ISCA), Toronto, Canada, 2017.

[5] Amazon. Ec2 instances powered by arm-based aws gravi-

ton processors, 2018. https://aws.amazon.com/blogs/aws/

new-ec2-instances-a1-powered-by-arm-based-aws-graviton-processors/.

[6] Kazumaro Aoki, Fumitaka Hoshino, Tetsutaro Kobayashi, and Hiroaki Oguro. Elliptic

curve arithmetic using simd. In George I. Davida and Yair Frankel, editors, Information

Security, pages 235–247, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg. ISBN

978-3-540-45439-7.

[7] ARM. Neon. Technical report, November 2018. https://developer.arm.com/

technologies/neon.

70

https://en.wikichip.org/wiki/intel/xeon_gold/5118
https://en.wikichip.org/wiki/intel/xeon_gold/5118
http://login.ezproxy.lib.vt.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=edseee&AN=edseee.6583151&site=eds-live&scope=site
http://login.ezproxy.lib.vt.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=edseee&AN=edseee.6583151&site=eds-live&scope=site
http://login.ezproxy.lib.vt.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=edseee&AN=edseee.6583151&site=eds-live&scope=site
https://aws.amazon.com/blogs/aws/new-ec2-instances-a1-powered-by-arm-based-aws-graviton-processors/
https://aws.amazon.com/blogs/aws/new-ec2-instances-a1-powered-by-arm-based-aws-graviton-processors/
https://developer.arm.com/technologies/neon
https://developer.arm.com/technologies/neon

BIBLIOGRAPHY 71

[8] ARM. Arm hpc tools for sve. Technical report, November 2018. https://developer.

arm.com/products/software-development-tools/hpc/sve.

[9] Mehmet Ali Arslan, Flavius Gruian, Krzysztof Kuchcinski, and Andréas Karlsson.

Code generation for a simd architecture with custom memory organisation. In Design

and Architectures for Signal and Image Processing (DASIP), 2016 Conference on,

pages 90–97. IEEE, 2016.

[10] David F. Bacon, Susan L. Graham, and Oliver J. Sharp. Compiler transformations for

high-performance computing. ACM Comput. Surv., 26(4):345–420, December 1994.

ISSN 0360-0300.

[11] D. H. Bailey, E. Barszcz, L. Dagum, and H. D. Simon. Nas parallel benchmark results.

In Supercomputing ’92:Proceedings of the 1992 ACM/IEEE Conference on Supercom-

puting, pages 386–393, Nov 1992.

[12] Antonio Barbalace, Robert Lyerly, Christopher Jelesnianski, Anthony Carno, Ho-

Ren Chuang, Vincent Legout, and Binoy Ravindran. Breaking the boundaries in

heterogeneous-isa datacenters. In Proceedings of the Twenty-Second International

Conference on Architectural Support for Programming Languages and Operating Sys-

tems, ASPLOS ’17, pages 645–659, New York, NY, USA, 2017. ACM. ISBN 978-1-

4503-4465-4. doi: 10.1145/3037697.3037738. URL http://doi.acm.org/10.1145/

3037697.3037738.

[13] Tobias Beisel, Tobias Wiersema, Christian Plessl, and André Brinkmann. Coopera-

tive multitasking for heterogeneous accelerators in the linux completely fair scheduler.

In ASAP 2011-22nd IEEE International Conference on Application-specific Systems,

Architectures and Processors, pages 223–226. IEEE, 2011.

https://developer.arm.com/products/software-development-tools/hpc/sve
https://developer.arm.com/products/software-development-tools/hpc/sve
http://doi.acm.org/10.1145/3037697.3037738
http://doi.acm.org/10.1145/3037697.3037738

72 BIBLIOGRAPHY

[14] Eli Benderskys. Analyzing function cfgs with llvm. URL https://eli.

thegreenplace.net/2013/09/16/analyzing-function-cfgs-with-llvm.

[15] Sergey Blagodurov, Sergey Zhuravlev, Alexandra Fedorova, and Ali Kamali. A case for

numa-aware contention management on multicore systems. In Proceedings of the 19th

international conference on Parallel architectures and compilation techniques, pages

557–558. ACM, 2010.

[16] Chandler Carruth Bob Wilson, Diego Novillo. Pgo and llvm, status and current work,

2007. URL https://llvm.org/devmtg/2013-11/slides/Carruth-PGO.pdf.

[17] Shekhar Borkar. Thousand core chips: a technology perspective. In Proceedings of the

44th annual Design Automation Conference, pages 746–749. ACM, 2007.

[18] Dennis Bradford, Sundaram Chinthamani, Jesus Corbal, Adhiraj Hassan, Ken Janik,

and Nawab Ali. Knights mill: New intel processor for machine learning. In Hot Chips

29, August 2017.

[19] D. Callahan, J. Dongarra, and D. Levine. Vectorizing compilers: A test suite and

results. In Proceedings of the 1988 ACM/IEEE Conference on Supercomputing, Super-

computing ’88, pages 98–105, Los Alamitos, CA, USA, 1988. IEEE Computer Society

Press. ISBN 0-8186-0882-X.

[20] Cavium. Thunderx cn8890 - cavium, 2013. URL https://en.wikichip.org/wiki/

cavium/thunderx/cn8890.

[21] Hao Chen, Nicholas S Flann, and Daniel W Watson. Parallel genetic simulated an-

nealing: a massively parallel simd algorithm. IEEE Transactions on Parallel and

Distributed Systems, 9(2):126–136, 1998.

https://eli.thegreenplace.net/2013/09/16/analyzing-function-cfgs-with-llvm
https://eli.thegreenplace.net/2013/09/16/analyzing-function-cfgs-with-llvm
https://llvm.org/devmtg/2013-11/slides/Carruth-PGO.pdf
https://en.wikichip.org/wiki/cavium/thunderx/cn8890
https://en.wikichip.org/wiki/cavium/thunderx/cn8890

BIBLIOGRAPHY 73

[22] Jian Chen and Lizy K John. Efficient program scheduling for heterogeneous multi-core

processors. In 2009 46th ACM/IEEE Design Automation Conference, pages 927–930.

IEEE, 2009.

[23] Chi Ching Chi, Mauricio Alvarez-Mesa, Benjamin Bross, Ben Juurlink, and Thomas

Schierl. Simd acceleration for hevc decoding. IEEE Transactions on circuits and

systems for video technology, 25(5):841–855, 2015.

[24] Nathan Clark, Amir Hormati, Sami Yehia, Scott Mahlke, and Krisztian Flautner.

Liquid simd: Abstracting simd hardware using lightweight dynamic mapping. In 2007

IEEE 13th International Symposium on High Performance Computer Architecture,

pages 216–227. IEEE, 2007.

[25] Ampere Computing. Ampere processors, 2018. URL https://amperecomputing.

com/product/.

[26] Jason Cong and Bo Yuan. Energy-efficient scheduling on heterogeneous multi-core

architectures. In Proceedings of the 2012 ACM/IEEE international symposium on Low

power electronics and design, pages 345–350. ACM, 2012.

[27] Gregory W Cook and Edward J Delp. An investigation of scalable simd i/o techniques

with application to parallel jpeg compression. Journal of Parallel and distributed

computing, 30(2):111–128, 1995.

[28] Keith Cooper and Linda Torczon. Engineering a compiler. Elsevier, 2011.

[29] R. Cypher and J. L. C. Sanz. Simd architectures and algorithms for image processing

and computer vision. IEEE Transactions on Acoustics, Speech, and Signal Processing,

37(12):2158–2174, Dec 1989. ISSN 0096-3518.

https://amperecomputing.com/product/
https://amperecomputing.com/product/

74 BIBLIOGRAPHY

[30] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger. Dark

silicon and the end of multicore scaling. In 2011 38th Annual International Symposium

on Computer Architecture (ISCA), pages 365–376, June 2011.

[31] Michael Feldman. Intel dumps knights hill, future of xeon phi prod-

uct line uncertain, November 2017. https://www.top500.org/news/

intel-dumps-knights-hill-future-of-xeon-phi-product-line-uncertain/.

[32] Michael Feldman. Intel ships xeon skylake processor with in-

tegrated fpga, May 2018. https://www.top500.org/news/

intel-ships-xeon-skylake-processor-with-integrated-fpga/.

[33] Sheng-Yu Fu, Ding-Yong Hong, Jan-Jan Wu, Pangfeng Liu, and Wei-Chung Hsu. Simd

code translation in an enhanced hqemu. In 2015 IEEE 21st International Conference

on Parallel and Distributed Systems (ICPADS), pages 507–514. IEEE, 2015.

[34] Sheng-Yu Fu, Jan-Jan Wu, and Wei-Chung Hsu. Improving simd code generation in

qemu. In Proceedings of the 2015 design, automation & test in europe conference &

exhibition, pages 1233–1236. EDA Consortium, 2015.

[35] Sheng-Yu Fu, Ding-Yong Hong, Yu-Ping Liu, Jan-Jan Wu, and Wei-Chung Hsu. Op-

timizing data permutations in structured loads/stores translation and simd register

mapping for a cross-isa dynamic binary translator. Journal of Systems Architecture,

98:173–190, 2019.

[36] Xinwei Fu, Dongyoon Lee, and Changhee Jung. nadroid: statically detecting ordering

violations in android applications. In Proceedings of the 2018 International Symposium

on Code Generation and Optimization, pages 62–74. ACM, 2018.

[37] Xinwei Fu, Talha Ghaffar, James C Davis, and Dongyoon Lee. Edgewise: a better

https://www.top500.org/news/intel-dumps-knights-hill-future-of-xeon-phi-product-line-uncertain/
https://www.top500.org/news/intel-dumps-knights-hill-future-of-xeon-phi-product-line-uncertain/
https://www.top500.org/news/intel-ships-xeon-skylake-processor-with-integrated-fpga/
https://www.top500.org/news/intel-ships-xeon-skylake-processor-with-integrated-fpga/

BIBLIOGRAPHY 75

stream processing engine for the edge. In 2019 {USENIX} Annual Technical Conference

({USENIX}{ATC} 19), pages 929–946, 2019.

[38] Ramy Gad, Tim Süß, and André Brinkmann. Compiler driven automatic kernel context

migration for heterogeneous computing. In 2014 IEEE 34th International Conference

on Distributed Computing Systems, pages 389–398. IEEE, 2014.

[39] P. Greenhalgh. big.little processing with arm cortex-a15 & cortex-a7, 2011. Technical

report, ARM.

[40] Boncheol Gu, Andre S. Yoon, Duck-Ho Bae, Insoon Jo, Jinyoung Lee, Jonghyun Yoon,

Jeong-Uk Kang, Moonsang Kwon, Chanho Yoon, Sangyeun Cho, Jaeheon Jeong, and

Duckhyun Chang. Biscuit: A framework for near-data processing of big data workloads.

In Proceedings of the 43rd International Symposium on Computer Architecture, ISCA

’16, pages 153–165, Piscataway, NJ, USA, 2016. IEEE Press. ISBN 978-1-4673-8947-1.

doi: 10.1109/ISCA.2016.23. URL https://doi.org/10.1109/ISCA.2016.23.

[41] Arthur Hennequin, Ian Masliah, and Lionel Lacassagne. Designing efficient simd algo-

rithms for direct connected component labeling. In Proceedings of the 5th Workshop

on Programming Models for SIMD/Vector Processing, page 4. ACM, 2019.

[42] Johannes Hofmann, Jan Treibig, Georg Hager, and Gerhard Wellein. Comparing the

performance of different x86 simd instruction sets for a medical imaging application

on modern multi-and manycore chips. In Proceedings of the 2014 Workshop on Pro-

gramming models for SIMD/Vector processing, pages 57–64. ACM, 2014.

[43] Ding-Yong Hong, Sheng-Yu Fu, Yu-Ping Liu, Jan-Jan Wu, and Wei-Chung Hsu. Ex-

ploiting longer simd lanes in dynamic binary translation. In Parallel and Distributed

Systems (ICPADS), 2016 IEEE 22nd International Conference on, pages 853–860.

IEEE, 2016.

https://doi.org/10.1109/ISCA.2016.23

76 BIBLIOGRAPHY

[44] IK Hong, ST Chung, HK Kim, YB Kim, YD Son, and ZH Cho. Ultra fast symmetry

and simd-based projection-backprojection (ssp) algorithm for 3-d pet image recon-

struction. IEEE transactions on medical imaging, 26(6):789–803, 2007.

[45] Joel Hruska. Intel uses new foveros 3d chip-stacking to build core, atom on same

silicon, Dec 2018. URL https://bit.ly/2SSQ62R.

[46] Connor Imes and Henry Hoffmann. Minimizing energy under performance constraints

on embedded platforms: resource allocation heuristics for homogeneous and single-isa

heterogeneous multi-cores. ACM SIGBED Review, 11(4):49–54, 2015.

[47] Hiroshi Inoue, Takao Moriyama, Hideaki Komatsu, and Toshio Nakatani. Aa-sort: A

new parallel sorting algorithm for multi-core simd processors. In Parallel Architecture

and Compilation Techniques, 2007. PACT 2007. 16th International Conference on,

pages 189–198. IEEE, 2007.

[48] Texas Instruments. Omap5912 multimedia processor device overview and architecture

reference guide, 2004.

[49] Intel. Intel advanced vector extensions 512 (intel avx-512), 2013. https://intel.ly/

2SyYl4i.

[50] Intel. Intel xeon silver 4110 processor product specifications, 2017.

URL https://ark.intel.com/content/www/us/en/ark/products/123547/

intel-xeon-silver-4110-processor-11m-cache-2-10-ghz.html.

[51] Intel. Intel xeon gold 5118 processor product specifica-

tions, 2017. URL https://ark.intel.com/products/120473/

Intel-Xeon-Gold-5118-Processor-16-5M-Cache-2-30-GHz-.

[52] Intel. Intel Xeon processor scalable family, 2018. https://intel.ly/2t1apTH.

https://bit.ly/2SSQ62R
https://intel.ly/2SyYl4i
https://intel.ly/2SyYl4i
https://ark.intel.com/content/www/us/en/ark/products/123547/intel-xeon-silver-4110-processor-11m-cache-2-10-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/123547/intel-xeon-silver-4110-processor-11m-cache-2-10-ghz.html
https://ark.intel.com/products/120473/Intel-Xeon-Gold-5118-Processor-16-5M-Cache-2-30-GHz-
https://ark.intel.com/products/120473/Intel-Xeon-Gold-5118-Processor-16-5M-Cache-2-30-GHz-
https://intel.ly/2t1apTH

BIBLIOGRAPHY 77

[53] Keith R Jackson, Lavanya Ramakrishnan, Krishna Muriki, Shane Canon, Shreyas

Cholia, John Shalf, Harvey J Wasserman, and Nicholas J Wright. Performance analysis

of high performance computing applications on the amazon web services cloud. In 2nd

IEEE international conference on cloud computing technology and science, pages 159–

168. IEEE, 2010.

[54] Aamer Jaleel, Hashem H Najaf-Abadi, Samantika Subramaniam, Simon C Steely, and

Joel Emer. Cruise: cache replacement and utility-aware scheduling. In ACM SIGARCH

Computer Architecture News, volume 40, pages 249–260. ACM, 2012.

[55] Xiaowei Jiang, Asit Mishra, Li Zhao, Ravishankar Iyer, Zhen Fang, Sadagopan Srini-

vasan, Srihari Makineni, Paul Brett, and Chita R Das. Access: Smart scheduling for

asymmetric cache cmps. In High Performance Computer Architecture (HPCA), 2011

IEEE 17th International Symposium on, pages 527–538. IEEE, 2011.

[56] Feras Karablieh and Rida A Bazzi. Heterogeneous checkpointing for multithreaded

applications. In 21st IEEE Symposium on Reliable Distributed Systems, 2002. Pro-

ceedings., pages 140–149. IEEE, 2002.

[57] Mohamed Karaoui, Anthony Carno, Robert Lyerly, Sang-Hoon Kim, Pierre Olivier,

Changwoo Min, and Binoy Ravindran. Scheduling HPC workloads on heterogeneous-

ISA architectures. In 24th ACM SIGPLAN Annual Symposium on Principles and

Practice of Parallel Programming (PPoPP’19), February 2019. Poster paper.

[58] Patrick Kennedy. Cavium thunderx2 review and benchmarks a real

arm server option, Jun 2018. URL https://www.servethehome.com/

cavium-thunderx2-review-benchmarks-real-arm-server-option/.

[59] Nam Sung Kim and Pankaj Mehra. Practical near-data processing to evolve memory

https://www.servethehome.com/cavium-thunderx2-review-benchmarks-real-arm-server-option/
https://www.servethehome.com/cavium-thunderx2-review-benchmarks-real-arm-server-option/

78 BIBLIOGRAPHY

and storage devices into mainstream heterogeneous computing systems. In Proceedings

of the 56th Annual Design Automation Conference 2019, page 22. ACM, 2019.

[60] David Koufaty, Dheeraj Reddy, and Scott Hahn. Bias scheduling in heterogeneous

multi-core architectures. In Proceedings of the 5th European conference on Computer

systems, pages 125–138. ACM, 2010.

[61] Vlad Krasnov. On the dangers of intel’s frequency scaling, November 2017. https:

//blog.cloudflare.com/on-the-dangers-of-intels-frequency-scaling/.

[62] Rakesh Kumar, Keith I Farkas, Norman P Jouppi, Parthasarathy Ranganathan, and

Dean M Tullsen. Single-isa heterogeneous multi-core architectures: The potential for

processor power reduction. In Proceedings of the 36th annual IEEE/ACM International

Symposium on Microarchitecture, page 81. IEEE Computer Society, 2003.

[63] Rakesh Kumar, Dean M Tullsen, Parthasarathy Ranganathan, Norman P Jouppi, and

Keith I Farkas. Single-isa heterogeneous multi-core architectures for multithreaded

workload performance. In Computer Architecture, 2004. Proceedings. 31st Annual

International Symposium on, pages 64–75. IEEE, 2004.

[64] Rakesh Kumar, Dean M Tullsen, and Norman P Jouppi. Core architecture optimization

for heterogeneous chip multiprocessors. In Parallel Architectures and Compilation

Techniques (PACT), 2006 International Conference on, pages 23–32. IEEE, 2006.

[65] Chris Lamont. Introduction to intel advanced vector extensions. Technical report,

June 2011. https://intel.ly/2ETCWyt.

[66] Chris Lattner. Introduction to the llvm compiler system. In Proceedings of Interna-

tional Workshop on Advanced Computing and Analysis Techniques in Physics Research,

Erice, Sicily, Italy, page 19, 2008.

https://blog.cloudflare.com/on-the-dangers-of-intels-frequency-scaling/
https://blog.cloudflare.com/on-the-dangers-of-intels-frequency-scaling/
https://intel.ly/2ETCWyt

BIBLIOGRAPHY 79

[67] Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong program

analysis & transformation. In Proceedings of the international symposium on Code

generation and optimization: feedback-directed and runtime optimization, page 75.

IEEE Computer Society, 2004.

[68] G. Lee, H. Park, S. Heo, K. Chang, H. Lee, and H. Kim. Architecture-aware auto-

matic computation offload for native applications. In 2015 48th Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO), pages 521–532, Dec 2015.

doi: 10.1145/2830772.2830833.

[69] Janghaeng Lee, Mehrzad Samadi, Yongjun Park, and Scott Mahlke. Transparent cpu-

gpu collaboration for data-parallel kernels on heterogeneous systems. In Proceedings of

the 22nd international conference on Parallel architectures and compilation techniques,

pages 245–256. IEEE Press, 2013.

[70] Baptiste Lepers, Vivien Quéma, and Alexandra Fedorova. Thread and memory place-

ment on {NUMA} systems: Asymmetry matters. In 2015 {USENIX} Annual Technical

Conference ({USENIX}{ATC} 15), pages 277–289, 2015.

[71] Jianhui Li, Qi Zhang, Shu Xu, and Bo Huang. Optimizing dynamic binary trans-

lation for simd instructions. In International Symposium on Code Generation and

Optimization (CGO’06), pages 12–pp. IEEE, 2006.

[72] Felix Xiaozhu Lin, Zhen Wang, and Lin Zhong. K2: A mobile operating system for

heterogeneous coherence domains. In Proceedings of the 19th International Conference

on Architectural Support for Programming Languages and Operating Systems, ASPLOS

’14, pages 285–300, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2305-5.

[73] Jiawen Liu, Hengyu Zhao, Matheus A Ogleari, Dong Li, and Jishen Zhao. Processing-

in-memory for energy-efficient neural network training: A heterogeneous approach.

80 BIBLIOGRAPHY

In 2018 51st Annual IEEE/ACM International Symposium on Microarchitecture (MI-

CRO), pages 655–668. IEEE, 2018.

[74] Yu-Ping Liu, Ding-Yong Hong, Jan-Jan Wu, Sheng-Yu Fu, and Wei-Chung Hsu. Ex-

ploiting asymmetric simd register configurations in arm-to-x86 dynamic binary transla-

tion. In 2017 26th International Conference on Parallel Architectures and Compilation

Techniques (PACT), pages 343–355. IEEE, 2017.

[75] LLVM. How to build clang and llvm with profile-guided optimizations, 2003. URL

https://llvm.org/docs/HowToBuildWithPGO.html.

[76] LLVM. Auto-vectorization in llvm, 2003. URL https://llvm.org/docs/

Vectorizers.html.

[77] LLVM. Profile guided optimization, 2007. URL https://clang.llvm.org/docs/

UsersManual.html#profile-guided-optimization.

[78] Arm Ltd. Technologies | dynamiq arm developer, 2017. URL https://developer.

arm.com/technologies/dynamiq.

[79] Luca Lugini, Vinicius Petrucci, and Daniel Mosse. Online thread assignment for het-

erogeneous multicore systems. In Parallel Processing Workshops (ICPPW), 2012 41st

International Conference on, pages 538–544. IEEE, 2012.

[80] Jason Mars and Lingjia Tang. Whare-map: heterogeneity in homogeneous warehouse-

scale computers. In ACM SIGARCH Computer Architecture News, volume 41, pages

619–630. ACM, 2013.

[81] Jason Mars, Lingjia Tang, Robert Hundt, Kevin Skadron, and Mary Lou Soffa.

Bubble-up: Increasing utilization in modern warehouse scale computers via sensible

https://llvm.org/docs/HowToBuildWithPGO.html
https://llvm.org/docs/Vectorizers.html
https://llvm.org/docs/Vectorizers.html
https://clang.llvm.org/docs/UsersManual.html#profile-guided-optimization
https://clang.llvm.org/docs/UsersManual.html#profile-guided-optimization
https://developer.arm.com/technologies/dynamiq
https://developer.arm.com/technologies/dynamiq

BIBLIOGRAPHY 81

co-locations. In Proceedings of the 44th annual IEEE/ACM International Symposium

on Microarchitecture, pages 248–259. ACM, 2011.

[82] Marvell. Liquidio ii 10/25gbe Adapter family, 2019. https://bit.ly/2H7NWLk.

[83] F H McMahon. The Livermore Fortran kernels: a computer test of the numerical

performance range. Lawrence Berkeley Nat. Lab., Berkeley, CA, 1986. URL https:

//cds.cern.ch/record/178064.

[84] Sparsh Mittal. A survey of techniques for architecting and managing asymmetric

multicore processors. ACM Comput. Surv., 48(3):45:1–45:38, February 2016. ISSN

0360-0300. doi: 10.1145/2856125. URL http://doi.acm.org/10.1145/2856125.

[85] Sparsh Mittal and Jeffrey S. Vetter. A survey of cpu-gpu heterogeneous computing

techniques. ACM Comput. Surv., 47(4):69:1–69:35, July 2015. ISSN 0360-0300. doi:

10.1145/2788396. URL http://doi.acm.org/10.1145/2788396.

[86] Chuck Moore. Data processing in exascale-class computer systems. In The Salishan

Conference on High Speed Computing, 2011.

[87] D. Nemirovsky, T. Arkose, N. Markovic, M. Nemirovsky, O. Unsal, and A. Cristal. A

machine learning approach for performance prediction and scheduling on heterogeneous

cpus. In 2017 29th International Symposium on Computer Architecture and High

Performance Computing (SBAC-PAD), pages 121–128, Oct 2017.

[88] Netronome. Agilio SmartNICs, 2019. https://www.netronome.com/products/

agilio-cx/.

[89] Nvidia. The benefits of multiple cpu cores in mobile devices, 2010.

URL https://www.nvidia.com/content/PDF/tegra_white_papers/

Benefits-of-Multi-core-CPUs-in-Mobile-Devices_Ver1.2.pdf.

https://bit.ly/2H7NWLk
https://cds.cern.ch/record/178064
https://cds.cern.ch/record/178064
http://doi.acm.org/10.1145/2856125
http://doi.acm.org/10.1145/2788396
https://www.netronome.com/products/agilio-cx/
https://www.netronome.com/products/agilio-cx/
https://www.nvidia.com/content/PDF/tegra_white_papers/Benefits-of-Multi-core-CPUs-in-Mobile-Devices_Ver1.2.pdf
https://www.nvidia.com/content/PDF/tegra_white_papers/Benefits-of-Multi-core-CPUs-in-Mobile-Devices_Ver1.2.pdf

82 BIBLIOGRAPHY

[90] Nvidia. Variable smp - a multi-core cpu architecture for low power and high perfor-

mance, 2011. URL https://www.nvidia.com/content/PDF/tegra_white_papers/

tegra-whitepaper-0911b.pdf.

[91] Pierre Olivier, Sang-Hoon Kim, and Binoy Ravindran. OS support for thread migration

and distribution in the fully heterogeneous datacenter. In Proceedings of the 16th

Workshop on Hot Topics in Operating Systems, HotOS ’17, pages 174–179, New York,

NY, USA, 2017. ACM. ISBN 978-1-4503-5068-6. doi: 10.1145/3102980.3103009. URL

http://doi.acm.org/10.1145/3102980.3103009.

[92] OpenCV. Opencv: Introduction. Technical report, November 2018. https://docs.

opencv.org/3.3.1/d1/dfb/intro.html.

[93] Edson Luiz Padoin, Laércio Lima Pilla, Márcio Castro, Francieli Z Boito, Philippe

Olivier Alexandre Navaux, and Jean-François Méhaut. Performance/energy trade-

off in scientific computing: the case of arm big. little and intel sandy bridge. IET

Computers & Digital Techniques, 9(1):27–35, 2014.

[94] Alex Pajuelo, Antonio González, and Mateo Valero. Speculative dynamic vectorization.

In ACM SIGARCH Computer Architecture News, volume 30, pages 271–280. IEEE

Computer Society, 2002.

[95] Szilárd Páll and Berk Hess. A flexible algorithm for calculating pair interactions on

simd architectures. Computer Physics Communications, 184(12):2641–2650, 2013.

[96] S. Panneerselvam and M. Swift. Rinnegan: Efficient resource use in heterogeneous

architectures. In 2016 International Conference on Parallel Architecture and Compi-

lation Techniques (PACT), pages 373–386, Sept 2016. doi: 10.1145/2967938.2967964.

https://www.nvidia.com/content/PDF/tegra_white_papers/tegra-whitepaper-0911b.pdf
https://www.nvidia.com/content/PDF/tegra_white_papers/tegra-whitepaper-0911b.pdf
http://doi.acm.org/10.1145/3102980.3103009
https://docs.opencv.org/3.3.1/d1/dfb/intro.html
https://docs.opencv.org/3.3.1/d1/dfb/intro.html

BIBLIOGRAPHY 83

[97] Vinicius Petrucci, Orlando Loques, and Daniel Mossé. Lucky scheduling for energy-

efficient heterogeneous multi-core systems. In HotPower, 2012.

[98] Ioannis Pitas, editor. Parallel Algorithms: For Digital Image Processing, Computer

Vision and Neural Networks. John Wiley & Sons, Inc., New York, NY, USA, 1993.

ISBN 0-471-93566-2.

[99] Andreas Prodromou, Ashish Venkat, and Dean M Tullsen. Deciphering predictive

schedulers for heterogeneous-isa multicore architectures. 2019.

[100] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis. Evaluating

mapreduce for multi-core and multiprocessor systems. In 2007 IEEE 13th International

Symposium on High Performance Computer Architecture, pages 13–24, Feb 2007. doi:

10.1109/HPCA.2007.346181.

[101] Charles Reiss, Alexey Tumanov, Gregory R Ganger, Randy H Katz, and Michael A

Kozuch. Heterogeneity and dynamicity of clouds at scale: Google trace analysis. In

Proceedings of the Third ACM Symposium on Cloud Computing, page 7. ACM, 2012.

[102] Greg Sadowski. Design challenges facing cpu-gpu-accelerator integrated heterogeneous

systems. In Design Automation Conference (DAC’14), 2014.

[103] David Schor. Intel reveals 10nm sunny cove core, a new core roadmap, and teases ice

lake chips, Dec 2018. URL https://bit.ly/2NLEbTg.

[104] J. M. Shalf and R. Leland. Computing beyond moore’s law. Computer, 48(12):14–23,

Dec 2015. ISSN 0018-9162. doi: 10.1109/MC.2015.374.

[105] Vilas Sridharan, Nathan DeBardeleben, Sean Blanchard, Kurt B Ferreira, Jon Stearley,

John Shalf, and Sudhanva Gurumurthi. Memory errors in modern systems: The good,

the bad, and the ugly. ACM SIGPLAN Notices, 50(4):297–310, 2015.

https://bit.ly/2NLEbTg

84 BIBLIOGRAPHY

[106] Richard M Stallman et al. Using the gnu compiler collection. Free Software Foundation,

4(02), 2003.

[107] David Tam, Reza Azimi, and Michael Stumm. Thread clustering: sharing-aware

scheduling on smp-cmp-smt multiprocessors. In ACM SIGOPS Operating Systems

Review, volume 41, pages 47–58. ACM, 2007.

[108] Michael B Taylor. A landscape of the new dark silicon design regime. IEEE Micro, 33

(5):8–19, 2013.

[109] Marvell Technology. ThunderX ARM-based processors, 2013. https://www.marvell.

com/server-processors/thunderx-arm-processors/.

[110] Marvell Technology. ThunderX2 ARM-based processors, 2018. https://www.

marvell.com/server-processors/thunderx2-arm-processors/.

[111] Po-An Tsai, Changping Chen, and Daniel Sanchez. Adaptive scheduling for systems

with asymmetric memory hierarchies. In 2018 51st Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO), pages 641–654. IEEE, 2018.

[112] Kenzo Van Craeynest, Aamer Jaleel, Lieven Eeckhout, Paolo Narvaez, and Joel Emer.

Scheduling heterogeneous multi-cores through performance impact estimation (pie).

In ACM SIGARCH Computer Architecture News, volume 40, pages 213–224. IEEE

Computer Society, 2012.

[113] Kenzo Van Craeynest, Shoaib Akram, Wim Heirman, Aamer Jaleel, and Lieven Eeck-

hout. Fairness-aware scheduling on single-isa heterogeneous multi-cores. In Proceedings

of the 22nd international conference on Parallel architectures and compilation tech-

niques, pages 177–187. IEEE, 2013.

https://www.marvell.com/server-processors/thunderx-arm-processors/
https://www.marvell.com/server-processors/thunderx-arm-processors/
https://www.marvell.com/server-processors/thunderx2-arm-processors/
https://www.marvell.com/server-processors/thunderx2-arm-processors/

BIBLIOGRAPHY 85

[114] Ashish Venkat and Dean M. Tullsen. Harnessing isa diversity: Design of a

heterogeneous-isa chip multiprocessor. In Proceeding of the 41st Annual Interna-

tional Symposium on Computer Architecuture, ISCA ’14, pages 121–132, Piscataway,

NJ, USA, 2014. IEEE Press. ISBN 978-1-4799-4394-4. URL http://dl.acm.org/

citation.cfm?id=2665671.2665692.

[115] Ashish Venkat, H. Basavaraj, and D. M. Tullsen. Composite-isa cores: Enabling multi-

isa heterogeneity using a single isa. HPCA, 2019.

[116] Ganesh Venkatesh, Jack Sampson, Nathan Goulding, Saturnino Garcia, Vladyslav

Bryksin, Jose Lugo-Martinez, Steven Swanson, and Michael Bedford Taylor. Con-

servation cores: Reducing the energy of mature computations. In Proceedings of the

Fifteenth Edition of ASPLOS on Architectural Support for Programming Languages

and Operating Systems, ASPLOS XV, pages 205–218, New York, NY, USA, 2010.

ACM. ISBN 978-1-60558-839-1. doi: 10.1145/1736020.1736044.

[117] David G. von Bank, Charles M. Shub, and Robert W. Sebesta. A unified model of

pointwise equivalence of procedural computations. ACM Trans. Program. Lang. Syst.,

16(6):1842–1874, November 1994. ISSN 0164-0925. doi: 10.1145/197320.197402. URL

http://doi.acm.org/10.1145/197320.197402.

[118] M Mitchell Waldrop. The chips are down for moore’s law. Nature News, 530(7589):

144, 2016.

[119] Xin Wang, Yunchun Li, and Xiaoxiang Zou. Flow-based sm4 encryption via tilera

multiprocessor. In 2016 IEEE 18th International Conference on High Performance

Computing and Communications; IEEE 14th International Conference on Smart City;

IEEE 2nd International Conference on Data Science and Systems (HPCC/SmartCi-

ty/DSS), pages 741–748. IEEE, 2016.

http://dl.acm.org/citation.cfm?id=2665671.2665692
http://dl.acm.org/citation.cfm?id=2665671.2665692
http://doi.acm.org/10.1145/197320.197402

86 BIBLIOGRAPHY

[120] Paul Whytock. 3d tri-gate device keeps moore’s law in order,

Nov 2012. URL https://www.electronicdesign.com/components/

3d-tri-gate-device-keeps-moore-s-law-order.

[121] R. S. Williams. What’s next? [the end of moore’s law]. Computing in Science Engi-

neering, 19(2):7–13, Mar 2017. ISSN 1521-9615. doi: 10.1109/MCSE.2017.31.

[122] Michael Witbrock and Marco Zagha. An implementation of backpropagation learning

on gf11, a large simd parallel computer. Parallel Computing, 14(3):329 – 346, 1990.

ISSN 0167-8191. doi: https://doi.org/10.1016/0167-8191(90)90085-N. URL http:

//www.sciencedirect.com/science/article/pii/016781919090085N.

[123] Demin Xiong and Duane F Marble. Strategies for real-time spatial analysis using

massively parallel simd computers: an application to urban traffic flow analysis. In-

ternational Journal of Geographical Information Systems, 10(6):769–789, 1996.

[124] Xinhai Xu, Yufei Lin, Tao Tang, and Yisong Lin. Hial-ckpt: A hierarchical application-

level checkpointing for cpu-gpu hybrid systems. In 2010 5th International Conference

on Computer Science & Education, pages 1895–1899. IEEE, 2010.

[125] Da Zhang, Hao Wang, Kaixi Hou, Jing Zhang, and Wu-chun Feng. pdindel: Accel-

erating indel detection on a multicore cpu architecture with simd. In 2015 IEEE 5th

International Conference on Computational Advances in Bio and Medical Sciences

(ICCABS), pages 1–6. IEEE, 2015.

[126] Yuhao Zhu and Vijay Janapa Reddi. High-performance and energy-efficient mobile

web browsing on big/little systems. In High Performance Computer Architecture

(HPCA2013), 2013 IEEE 19th International Symposium on, pages 13–24. IEEE, 2013.

[127] Sergey Zhuravlev, Sergey Blagodurov, and Alexandra Fedorova. Addressing shared

https://www.electronicdesign.com/components/3d-tri-gate-device-keeps-moore-s-law-order
https://www.electronicdesign.com/components/3d-tri-gate-device-keeps-moore-s-law-order
http://www.sciencedirect.com/science/article/pii/016781919090085N
http://www.sciencedirect.com/science/article/pii/016781919090085N

BIBLIOGRAPHY 87

resource contention in multicore processors via scheduling. In ACM Sigplan Notices,

volume 45, pages 129–142. ACM, 2010.

	Titlepage
	Abstract
	General Audience Abstract
	Dedication
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Motivation
	Problem Statement
	Thesis Contributions
	Thesis Organization

	Background
	SIMD Instruction
	Brief LLVM Overview
	Popcorn Linux

	Related Work
	CPU/GPU Computing
	Single-ISA Heterogeneous Computing
	Heterogeneous-ISA Computing
	SIMD
	Workload Scheduling
	Workload Scheduling in heterogeneous systems
	Contention-aware Scheduling
	NUMA-aware Scheduling

	Enabling Cross-ISA SIMD Migration
	Definitions
	Selecting Migration Points
	Vector Unrolling

	Optimizing Cross-ISA SIMD Migration
	Baseline Approach Overhead
	Profiled Guided Optimization Approach
	Profiling Stage
	Optimizing Stage

	Leverage Processor-preference for Performance Gain
	Scheduling Policy
	Scheduler Setup

	Experimental Setup & Experiment Results
	Experimental Setup
	Experiment Results
	Two-application Workloads
	Multi-application Workloads

	Conclusion & Future Works
	Conclusion
	Future works

	Bibliography

